scholarly journals Enhanced Mineralization of [U-14C]2,4-Dichlorophenoxyacetic Acid in Soil from the Rhizosphere of Trifolium pratense

2004 ◽  
Vol 70 (8) ◽  
pp. 4766-4774 ◽  
Author(s):  
Liz J. Shaw ◽  
Richard G. Burns

ABSTRACT Enhanced biodegradation in the rhizosphere has been reported for many organic xenobiotic compounds, although the mechanisms are not fully understood. The purpose of this study was to discover whether rhizosphere-enhanced biodegradation is due to selective enrichment of degraders through growth on compounds produced by rhizodeposition. We monitored the mineralization of [U-14C]2,4-dichlorophenoxyacetic acid (2,4-D) in rhizosphere soil with no history of herbicide application collected over a period of 0 to 116 days after sowing of Lolium perenne and Trifolium pratense. The relationships between the mineralization kinetics, the number of 2,4-D degraders, and the diversity of genes encoding 2,4-D/α-ketoglutarate dioxygenase (tfdA) were investigated. The rhizosphere effect on [14C]2,4-D mineralization (50 μg g−1) was shown to be plant species and plant age specific. In comparison with nonplanted soil, there were significant (P < 0.05) reductions in the lag phase and enhancements of the maximum mineralization rate for 25- and 60-day T. pratense soil but not for 116-day T. pratense rhizosphere soil or for L. perenne rhizosphere soil of any age. Numbers of 2,4-D degraders in planted and nonplanted soil were low (most probable number, <100 g−1) and were not related to plant species or age. Single-strand conformational polymorphism analysis showed that plant species had no impact on the diversity of α-Proteobacteria tfdA-like genes, although an impact of 2,4-D application was recorded. Our results indicate that enhanced mineralization in T. pratense rhizosphere soil is not due to enrichment of 2,4-D-degrading microorganisms by rhizodeposits. We suggest an alternative mechanism in which one or more components of the rhizodeposits induce the 2,4-D pathway.

2011 ◽  
Vol 39 (1) ◽  
pp. 64 ◽  
Author(s):  
Călina Petruţa CORNEA ◽  
Cătălina VOAIDEŞ ◽  
Matilda CIUCA ◽  
Vasilica STAN ◽  
Eugenia GAMENT ◽  
...  

Rhizobia are soil bacteria that are capable to form nitrogen-fixing symbiosis with leguminous plants. This ability, as well as the diversity of microbial populations in the soil, and in the rhizosphere of host plants and non-host plants is influenced by several factors, including crop management. The aim of this work was the examination of the influence of some factors on indigenous populations of rhizobia in soils under different crop managements. The genetic diversity of rhizobial strains isolated directly from soil (free-living state) or from root nodules of three herbaceous perennial legumes was examined. The study was conducted in the experimental fields located in Moara Domnească area (South of Romania) and in the Brașov County. The characteristics of brown reddish soil were determined (nitrogen content, organic carbon content and pH). Counting of the rhizobia populations was done by most probable number estimation and by viable plate counts. Bacterial strains were isolated directly from soil samples or from root nodules of different plant species (Trifolium repens, T. pratense and Lotus corniculatus). The characterization of rhizobia was performed by DNA fingerprinting (ERIC PCR and BOX PCR) and the bacterial diversity of soils was examined by DGGE technique. The results revealed that the rhizobial diversity was significantly lower in soils under increased fertilization with N. A reduced intraspecific polymorphism was observed in the strains recovered from the same plant species (Trifolium spp.), whatever the origin of the plant (Moara Domnească or Brașov) but clear differences appeared to be related to the origin of nodules (red or white clover) as revealed by DNA fingerprints. However, various amplicon profiles were observed by DGGE when total DNA isolated from soils was examined, the differences being associated with the fertilization level.


1989 ◽  
Vol 67 (8) ◽  
pp. 2245-2251 ◽  
Author(s):  
Ruhama Berliner ◽  
John G. Torrey

An estimate was made of the abundance of different types of mycorrhizal associations in two plant communities of conifers and hardwoods in the Harvard Forest. Lists of plant species, the coverage of their foliage in the canopy and understorey layers, and the types of mycorrhizal associations for 45 species common in these communities are presented. Of the species examined, 91 % were mycorrhizal, representing most of the known major types, viz. ectomycorrhiza, vesicular–arbuscular mycorrhiza (VAM), ericoid, and monotropoid mycorrhiza. Of the 45 species studied, 22% of the species showed ectomycorrhizal, and 71 % VAM associations. A direct spore count was a more reliable method than the most probable number method for determining VAM occurrence in the soil. Spore numbers ranged from 4.4 to 11.8 spores/g oven-dried soil. In conifer stands, ectomycorrhizae were most common, although VAM were also observed in the conifer species. In hardwood stands, VAM were more frequent than in conifer stands, but mycorrhizae were heterogeneous and included a good proportion of the ericoid type. Ectomycorrhizae were more common in communities of low diversity; VAM occurred more frequently in communities of high plant species diversity.


Weed Science ◽  
2012 ◽  
Vol 60 (3) ◽  
pp. 516-524 ◽  
Author(s):  
L. Jason Krutz ◽  
Robert M. Zablotowicz ◽  
Krishna N. Reddy

A field study was conducted on ans-triazine–adapted soil to determine the effects ofs-triazine exclusion interval (1, 2, 3, or 4 yr), crop production system (continuous corn or continuous soybean), and rhizosphere proximity (bulk or rhizosphere soil) on atrazine degrader populations and activity. Atrazine degrader populations were quantified by a radiological Most Probable Number technique, while degrader activity was assessed via mineralization of ring-labeled14C-atrazine. As thes-triazine exclusion interval increased, atrazine degrader populations declined exponentially, regardless of crop or rhizosphere proximity. Crop and exclusion interval interacted to affect degrader populations (P = 0.0043). Pooled over rhizosphere and bulk soil, degrader populations were 1.5-fold higher and declined 2.8-fold faster in soybean than corn. An interaction between rhizosphere proximity and exclusion interval was also noted (P = 0.0021), whereby degrader populations were 1.9-fold higher and declined 2.8-fold slower in rhizosphere compared with bulk soil, regardless of crop. The time required for 50% mineralization of ring-labeled14C-atrazine (DT50) following exclusion ofs-triazine herbicides increased linearly at a rate of 2.2 d yr−1. In contrast, the DT50for this site prior to a knowns-triazine application was 85 d and declined exponentially over 5 yr of successive atrazine applications: 24.5 d after 1 yr, 10.8 d after two successive years, and 3.8 d after five successive atrazine applications. Omittings-triazines can reduce degrader populations and activity in adapted soils, but more than 4 yr is required to return mineralization kinetics to nonadapted levels, regardless of crop or rhizosphere proximity.


2011 ◽  
Vol 39 (1) ◽  
pp. 88 ◽  
Author(s):  
Vasilica STAN ◽  
Eugenia GAMENT ◽  
Călina Petruţa CORNEA ◽  
Cătălina VOAIDEŞ ◽  
Mirela DUŞA ◽  
...  

Heavy metals adversely influence microorganisms, affecting their growth, abundance, genetic diversity, nodulation ability and efficacy. The aim of this study was to isolate and characterize free-leaving Rhizobium from soil which were artificially polluted with Cu (100, 250, and 500 mg kg-1 soil), Zn (300, 700, and 1500 mg kg-1 soil) and Pb (50, 250, and 1000 mg kg-1 soil), but also with a mixture of all these metals, and cultivated with red clover (Trifolium pratense L.), and to compare them with bacteria isolated from similar type of soil, but unpolluted. Rhizobia from soil were isolated on YMA medium with or without bromothymol blue (0.00125%) as a pH-change indicator and the morpho-physiological characteristics of the colonies were examined. The number of Rhizobium was estimated using the most probable number method. Compared to the control, a decrease of rhizobia number and an increase of the metal concentration were observed. Several decameric primers (Operon Technology type) were used and a reduced polymorphism among isolated bacteria was observed. Moreover, significant differences were observed among these strains and the collection strains used as reference. Also, when primers nodCF/nodCI for detection of nod genes were used, several amplicons were obtained, different from the results obtained with similar strains isolated from unpolluted soil. These results suggest that the survival „price” of the Rhizobium in such polluted area was the alteration of some genes, including those involved in symbiosis and, probably, in nitrogen fixation.


1998 ◽  
Vol 180 (17) ◽  
pp. 4325-4331 ◽  
Author(s):  
Cindy H. Nakatsu ◽  
Ryszard Korona ◽  
Richard E. Lenski ◽  
Frans J. de Bruijn ◽  
Terence L. Marsh ◽  
...  

ABSTRACT Genetic rearrangements within a population of bacteria were analyzed to understand the degree of divergence occurring after experimental evolution. We used 18 replicate populations founded fromRalstonia sp. strain TFD41 that had been propagated for 1,000 generations with 2,4-dichlorophenoxyacetic acid (2,4-D) as the carbon source. Genetic divergence was examined by restriction fragment length polymorphism analysis of the incumbent plasmid that carries the 2,4-D catabolic genes and by amplification of random regions of the genome via PCR. In 18 evolved clones examined, we observed duplication within the plasmid, including the tfdA gene, which encodes a 2,4-D dioxygenase that catalyzes the first step in the 2,4-D catabolic pathway. In 71 of 72 evolved clones, a common 2.4-kb PCR product was lost when genomic fingerprints produced by PCR amplification using degenerate primers based on repetitive extragenic palindromic (REP) sequences (REP-PCR) were compared. The nucleotide sequence of the 2.4-kb PCR product has homology to the TRAP (tripartite ATP-independent periplasmic) solute transporter gene family. Hybridization of the 2.4-kb REP-PCR product from the ancestor to genomic DNA from the evolved populations showed that the loss of the PCR product resulted from deletions in the genome. Deletions in the plasmid and presence and/or absence of other REP-PCR products were also found in these clones but at much lower frequencies. The common and uncommon genetic changes observed show that both parallel and divergent genotypic evolution occurred in replicate populations of this bacterium.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Wanda Aulya ◽  
Fadhliani Fadhliani ◽  
Vivi Mardina

Water is the main source for life and also the most severe substance caused by pollution. The mandatory parameters for determining microbiological quality of drinking water are total non-fecal Coliform bacteria and Coliform fecal (Escherichia coli). Coliform bacteria are a group of microorganisms commonly used as indicators, where these bacteria can be a signal to determine whether a water source has been contaminated by bacteria or not, while fecal Coliform bacteria are indicator bacteria polluting pathogenic bacteria originating from human feces and warm-blooded animals (mammals) . The water inspection method in this study uses the MPN (Most Probable Number) method which consists of 3 tests, namely, the presumption test, the affirmation test, and the reinforcement test. The results showed that of 15 drinking water samples 8 samples were tested positive for Coliform bacteria with the highest total bacterial value of sample number 1, 15 (210/100 ml), while 7 other samples were negative. From 8 positive Coliform samples only 1 sample was stated to be negative fecal Coliform bacteria and 7 other samples were positive for Coliform fecal bacteria with the highest total bacterial value of sample number 1 (210/100 ml).


2015 ◽  
Vol 1 (1) ◽  
pp. 44
Author(s):  
Rafika Sari ◽  
Pratiwi Apridamayanti

Latar Belakang: Makanan laut merupakan salah satu jenis makanan yang banyak dikonsumsi oleh masyarakat selain sebagai komoditi ekspor. Mengkonsumsi makanan laut yang telah terkontaminasi bakteri hidup atau toksin yang dihasilkannya dapat menyebabkan keracunan makanan. Tujuan penelitian ini adalah untuk mengetahui adanya kontaminasi bakteri koliform E.coli sebagai indikator pencemaran pada makanan laut dan memberikan informasi kelayakan dan keamanan konsumsi dari makanan laut di dua pasar tradisional terbesar di daerah Pontianak. Metode: Sampel yang digunakan adalah ikan, sotong dan udang. Penelitian terhadap sampel dilakukan menggunakan uji Most Probable Number (MPN) yang dilengkapi dengan uji biokimia untuk mengidentifikasi jenis bakteri pada sampel melalui penanaman bakteri pada media agar Lactose Broth (LB) dan Briliant Green Lactose Bile Broth (BGLB). Hasil: Hasil penelitian menunjukkan bakteri koliform E.coli terdeteksi pada 100% sampel dengan nilai MPN yang tidak memenuhi kriteria kelayakan konsumsi, yakni >3/g. Kesimpulan: Makanan yang ada tidak memenuhi kriteria kelayakan konsumsi.


Sign in / Sign up

Export Citation Format

Share Document