scholarly journals Impact of the Microscale Distribution of a Pseudomonas Strain Introduced into Soil on Potential Contacts with Indigenous Bacteria

2005 ◽  
Vol 71 (12) ◽  
pp. 8123-8131 ◽  
Author(s):  
Arnaud Dechesne ◽  
Céline Pallud ◽  
Franck Bertolla ◽  
Geneviève L. Grundmann

ABSTRACT Soil bioaugmentation is a promising approach in soil bioremediation and agriculture. Nevertheless, our knowledge of the fate and activity of introduced bacteria in soil and thus of their impact on the soil environment is still limited. The microscale spatial distribution of introduced bacteria has rarely been studied, although it determines the encounter probability between introduced cells and any components of the soil ecosystem and thus plays a role in the ecology of introduced bacteria. For example, conjugal gene transfer from introduced bacteria to indigenous bacteria requires cell-to-cell contact, the probability of which depends on their spatial distribution. To quantitatively characterize the microscale distribution of an introduced bacterial population and its dynamics, a gfp-tagged derivative of Pseudomonas putida KT2440 was introduced by percolation in repacked soil columns. Initially, the introduced population was less widely spread at the microscale level than two model indigenous functional communities: the 2,4-dichlorophenoxyacetic acid degraders and the nitrifiers (each at 106 CFU g−1 soil). When the soil was percolated with a substrate metabolizable by P. putida or incubated for 1 month, the microscale distribution of introduced bacteria was modified towards a more widely dispersed distribution. The quantitative data indicate that the microscale spatial distribution of an introduced strain may strongly limit its contacts with the members of an indigenous bacterial community. This could constitute an explanation to the low number of indigenous transconjugants found most of time when a plasmid-donor strain is introduced into soil.

2004 ◽  
Vol 70 (5) ◽  
pp. 2709-2716 ◽  
Author(s):  
C. Pallud ◽  
A. Dechesne ◽  
J. P. Gaudet ◽  
D. Debouzie ◽  
G. L. Grundmann

ABSTRACT Bacterial processes in soil, including biodegradation, require contact between bacteria and substrates. Knowledge of the three-dimensional spatial distribution of bacteria at the microscale is necessary to understand and predict such processes. Using a soil microsampling strategy combined with a mathematical spatial analysis, we studied the spatial distribution of 2,4-dichlorophenoxyacetic acid (2,4-D) degrader microhabitats as a function of 2,4-D degrader abundance. Soil columns that allowed natural flow were percolated with 2,4-D to increase the 2,4-D degrader abundance. Hundreds of soil microsamples (minimum diameter, 125 μm) were collected and transferred to culture medium to check for the presence of 2,4-D degraders. Spatial distributions of bacterial microhabitats were characterized by determining the average size of colonized soil patches and the average number of patches per gram of soil. The spatial distribution of 2,4-D degrader microhabitats was not affected by water flow, but there was an overall increase in colonized patch sizes after 2,4-D amendment; colonized microsamples were dispersed in the soil at low 2,4-D degrader densities and clustered in patches that were more than 0.5 mm in diameter at higher densities. During growth, spreading of 2,4-D degraders within the soil and an increase in 2,4-D degradation were observed. We hypothesized that spreading of the bacteria increased the probability of encounters with 2,4-D and resulted in better interception of the degradable substrate. This work showed that characterization of bacterial microscale spatial distribution is relevant to microbial ecology studies. It improved quantitative bacterial microhabitat description and suggested that sporadic movement of cells occurs. Furthermore, it offered perspectives for linking microbial function to the soil physicochemical environment.


2000 ◽  
Vol 66 (8) ◽  
pp. 3297-3304 ◽  
Author(s):  
Winnie Dejonghe ◽  
Johan Goris ◽  
Saïd El Fantroussi ◽  
Monica Höfte ◽  
Paul De Vos ◽  
...  

ABSTRACT Transfer of the 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids pEMT1 and pJP4 from an introduced donor strain,Pseudomonas putida UWC3, to the indigenous bacteria of two different horizons (A horizon, depth of 0 to 30 cm; B horizon, depth of 30 to 60 cm) of a 2,4-D-contaminated soil was investigated as a means of bioaugmentation. When the soil was amended with nutrients, plasmid transfer and enhanced degradation of 2,4-D were observed. These findings were most striking in the B horizon, where the indigenous bacteria were unable to degrade any of the 2,4-D (100 mg/kg of soil) during at least 22 days but where inoculation with either of the two plasmid donors resulted in complete 2,4-D degradation within 14 days. In contrast, in soils not amended with nutrients, inoculation of donors in the A horizon and subsequent formation of transconjugants (105 CFU/g of soil) could not increase the 2,4-D degradation rate compared to that of the noninoculated soil. However, donor inoculation in the nonamended B-horizon soil resulted in complete degradation of 2,4-D within 19 days, while no degradation at all was observed in noninoculated soil during 89 days. With plasmid pEMT1, this enhanced degradation seemed to be due only to transconjugants (105 CFU/g of soil), since the donor was already undetectable when degradation started. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes showed that inoculation of the donors was followed by a shift in the microbial community structure of the nonamended B-horizon soils. The new 16S rRNA gene fragments in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D-degrading transconjugant colonies isolated on agar plates. This result indicates that the observed change in the community was due to proliferation of transconjugants formed in soil. Overall, this work clearly demonstrates that bioaugmentation can constitute an effective strategy for cleanup of soils which are poor in nutrients and microbial activity, such as those of the B horizon.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 460e-460 ◽  
Author(s):  
Marisa F. de Oliveira ◽  
Gerson R. de L. Fortes ◽  
João B. da Silva

The aim of this work was to evaluate the organogenesis of Marubakaido apple rootstock under different aluminium concentratons. The explants were calli derived from apple internodes treated with either 2,4-dichlorophenoxyacetic acid or pichloram at 0.5 and 1.0 μM and under five different aluminium concentrations (0, 5, 10, 15, 20 mg/L). These calli were then treated with aluminium at 0, 5, 10, 15, and 20 mg/L. It was observed shoot regeneration only for those calli previously treated with pichloram. There were no significant difference among the aluminium concentrations.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 483a-483
Author(s):  
Roy N. Keys ◽  
Dennis T. Ray ◽  
David A. Dierig

Guayule (Parthenium argentatum Gray, Asteraceae) is a latex-producing perennial desert shrub that is potentially of economic importance as an industrial crop for the desert Southwest. It is known to possess complex reproductive modes. Diploids are predominantly sexual and self-incompatible, while polyploids show a range of apomictic potential and self-compatibility. This paper describes the development of a relatively rapid and simple technique for characterizing reproductive modes of breeding lines of P. argentatum. Initial field experiments were based on an auxin test used successfully to characterize reproductive mode in the Poaceae. The application of 2,4-dichlorophenoxyacetic acid inhibited embryo formation in P. argentatum, but this was not the case with other auxins tested. Results of field experiments were ambiguous because: 1) the floral structure of P. argentatum is such that auxins might not have penetrated to the ovules, and 2) there was potential self-fertilization by pollen released within isolation bags. Therefore, in vitro culture of flower heads was tested because it provided much better control of environmental conditions, growth regulator application, and pollen release. Auxin alone, or in combination with gibberellic acid or kinetin, inhibited parthenogenesis in vitro. Embryo production did not vary using two substantially different nutrient media. In vitro flower head culture using a (Nitsch and Nitsch) liquid nutrient medium without growth regulators, enabled characterization of the reproductive mode of seven breeding lines, ranging from predominantly sexual to predominantly apomictic. The results of this technique were substantiated using RAPD analyzes of progeny arrays from controlled crosses.


1997 ◽  
Vol 36 (10) ◽  
pp. 27-36 ◽  
Author(s):  
P. Mungkarndee ◽  
S. M. Rao Bhamidimarri ◽  
A. J. Mawson ◽  
R. Chong

Biodegradation of the mixed inhibitory substrates, 2,4-dichlorophenoxyacetic acid (2,4-D) and para-chloro-ortho-cresol (PCOC) was studied in aerobic batch cultures. Each substrate added beyond certain concentrations inhibited the degradation of the other. This mutual inhibition was found to be enhanced by 2,4-dichlorophenol (2,4-DCP) which is an intermediate metabolic product of 2,4-D. When 2,4-DCP accumulated to approximatelY 40 mg/l degradation of all compounds in the mixed 2,4-D and PCOC substrate system was completely inhibited. The degradation of 2,4-D and PCOC individually was also found to be inhibited by elevated concentrations of 2,4-DCP added externally, while PCOC inhibited the utilization of the intermediate.


1997 ◽  
Vol 30 (3) ◽  
pp. 175-185 ◽  
Author(s):  
A. Brusco ◽  
J. Pecci Saavedra ◽  
G. García ◽  
P. Tagliaferro ◽  
A. M. Evangelista de Duffard ◽  
...  

Chemosensors ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 43
Author(s):  
Jin Chul Yang ◽  
Suck Won Hong ◽  
Jinyoung Park

Surface imprinting used for template recognition in nanocavities can be controlled and improved by surface morphological changes. Generally, the lithographic technique is used for surface patterning concerning sensing signal amplification in molecularly imprinted polymer (MIP) thin films. In this paper, we describe the effects of silanized silica molds on sensing the properties of MIP films. Porous imprinted poly(MAA–co–EGDMA) films were lithographically fabricated using silanized or non-treated normal silica replica molds to detect 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide as the standard template. The silanized mold MIP film (st-MIP) (Δf = −1021 Hz) exhibited a better sensing response than the non-treated normal MIP (n-MIP) (Δf = −978 Hz) because the imprinting effects, which occurred via functional groups on the silica surface, could be reduced through silane modification. Particularly, two non-imprinted (NIP) films (st-NIP and n-NIP) exhibited significantly different sensing responses. The st-NIP (Δfst-NIP = −332 Hz) films exhibited lower Δf values than the n-NIP film (Δfn-NIP = −610 Hz) owing to the remarkably reduced functionality against nonspecific adsorption. This phenomenon led to different imprinting factor (IF) values for the two MIP films (IFst-MIP = 3.38 and IFn-MIP = 1.86), which was calculated from the adsorbed 2,4-D mass per poly(MAA–co–EGDMA) unit weight (i.e., QMIP/QNIP). Moreover, it was found that the st-MIP film had better selectivity than the n-MIP film based on the sensing response of analogous herbicide solutions. As a result, it was revealed that the patterned molds’ chemical surface modification, which controls the surface functionality of imprinted films during photopolymerization, plays a role in fabricating enhanced sensing properties in patterned MIP films.


Sign in / Sign up

Export Citation Format

Share Document