scholarly journals Diverse AvrPtoB Homologs from Several Pseudomonas syringae Pathovars Elicit Pto-Dependent Resistance and Have Similar Virulence Activities

2006 ◽  
Vol 72 (1) ◽  
pp. 702-712 ◽  
Author(s):  
Nai-Chun Lin ◽  
Robert B. Abramovitch ◽  
Young Jin Kim ◽  
Gregory B. Martin

ABSTRACT AvrPtoB is a type III effector protein from Pseudomonas syringae pv. tomato that physically interacts with the tomato Pto kinase and, depending on the host genotype, either elicits or suppresses programmed cell death associated with plant immunity. We reported previously that avrPtoB-related sequences are present in diverse gram-negative phytopathogenic bacteria. Here we describe characterization of avrPtoB homologs from P. syringae pv. tomato T1, PT23, and JL1065, P. syringae pv. syringae B728a, and P. syringae pv. maculicola ES4326. The avrPtoB homolog from P. syringae pv. maculicola, hopPmaL, was identified previously. The four new genes identified in this study are designated avrPtoBT1 , avrPtoBPT23 , avrPtoBJL1065 , and avrPtoBB728a . The AvrPtoB homologs exhibit 52 to 66% amino acid identity with AvrPtoB. Transcripts of each of the avrPtoB homologs were detected in the Pseudomonas strains from which they were isolated. Proteins encoded by the homologs were detected in all strains except P. syringae pv. tomato T1, suggesting that T1 suppresses accumulation of AvrPtoBT1. All of the homologs interacted with the Pto kinase in a yeast two-hybrid system and elicited a Pto-dependent defense response when they were delivered into leaf cells by DC3000ΔavrPtoΔavrPtoB, a P. syringae pv. tomato strain with a deletion of both avrPto and avrPtoB. Like AvrPtoB, all of the homologs enhanced the ability of DC3000ΔavrPtoΔavrPtoB to form lesions on leaves of two susceptible tomato lines. With the exception of HopPmaL which lacks the C-terminal domain, all AvrPtoB homologs suppressed programmed cell death elicited by the AvrPto-Pto interaction in an Agrobacterium-mediated transient assay. Thus, despite their divergent sequences, AvrPtoB homologs from diverse P. syringae pathovars have conserved avirulence and virulence activities similar to AvrPtoB activity.

2007 ◽  
Vol 50 (2) ◽  
pp. 253-264 ◽  
Author(s):  
Magdalena Krzymowska ◽  
Dorota Konopka-Postupolska ◽  
Miroslaw Sobczak ◽  
Violetta Macioszek ◽  
Brian E. Ellis ◽  
...  

2004 ◽  
Vol 17 (2) ◽  
pp. 131-139 ◽  
Author(s):  
Maren Krause ◽  
Jörg Durner

Harpin is a well-known proteinaceous bacterial elicitor that can induce an oxidative burst and programmed cell death in various host plants. Given the demonstrated roles of mitochondria in animal apoptosis, we investigated the effect of harpin from Pseudomonas syringae on mitochondrial functions in Arabidopsis suspension cells in detail. Fluorescence microscopy in conjunction with double-staining for reactive oxygen species (ROS) and mitochondria suggested co-localization of mitochondria and ROS generation. Plant defense responses or cell death after pathogen attack have been suggested to be regulated by the concerted action of ROS and nitric oxide (NO). However, although Arabidopsis cells respond to harpin treatment with NO generation, time course analyses suggest that NO generation is not involved in initial responses but, rather, is a consequence of cellular decay. Among the fast responses we observed was a decrease of the mitochondrial membrane potential Δψm and, possibly as a direct consequence, of ATP production. Furthermore, treatment of Arabidopsis cells with harpin protein induced a rapid cytochrome C release from mitochondria into the cytosol, which is regarded as a hallmark of programmed cell death or apoptosis. Northern and DNA array analyses showed strong induction of protecting or scavenging systems such as alternative oxidase and small heat shock proteins, components that are known to be associated with cellular stress responses. In sum, the presented data suggest that harpin inactivates mitochondria in Arabidopsis cells.


2021 ◽  
Author(s):  
Jennifer Prautsch ◽  
Jessica L. Erickson ◽  
Sedef Özyürek ◽  
Rahel Gormannns ◽  
Lars Franke ◽  
...  

In Nicotiana benthamiana, expression of the Xanthomonas effector XopQ triggers ROQ1-dependent ETI responses and in parallel accumulation of plastids around the nucleus and the formation of stromules. Both processes were proposed to contribute to ETI-related hypersensitive cell death and thereby to plant immunity. Whether these reactions are directly connected to ETI signaling events has not been tested. Here we utilized transient expression experiments to determine whether XopQ-mediated plastid reactions are a result of XopQ perception by ROQ1 or a consequence of XopQ virulence activity. We find that N. benthamiana mutants lacking ROQ1, both RNLs (NRG1 and ADR1) or EDS1, fail to elicit XopQ-dependent host cell death and stromule formation. Mutants lacking only NRG1 lost XopQ-dependent cell death but retained some stromule induction that was abolished in the RNL double mutant. This analysis aligns XopQ-induced stromules with the ETI signaling cascade but not to host programmed cell death. Furthermore, data reveal that XopQ-triggered plastid clustering is not strictly linked to stromule formation during ETI. Our data suggest that stromule formation, in contrast to chloroplast peri-nuclear dynamics, is an integral part of the N. benthamiana ETI response and that both RNL sub-types play a role in this ETI response.


2012 ◽  
Author(s):  
Guido Sessa ◽  
Gregory B. Martin

The research problem: The detection of pathogen-associated molecular patterns (PAMPs) by plant pattern recognition receptors (PRRs) is a key mechanism by which plants activate an effective immune response against pathogen attack. MAPK cascades are important signaling components downstream of PRRs that transduce the PAMP signal to activate various defense responses. Preliminary experiments suggested that the receptor-like cytoplasmickinase (RLCK) Mai5 plays a positive role in pattern-triggered immunity (PTI) and interacts with the MAPKKK M3Kε. We thus hypothesized that Mai5, as other RLCKs, functions as a component PRR complexes and acts as a molecular link between PAMP perception and activation of MAPK cascades. Original goals: The central goal of this research was to investigate the molecular mechanisms by which Mai5 and M3Kε regulate plant immunity. Specific objectives were to: 1. Determine the spectrum of PAMPs whose perception is transmitted by M3Kε; 2. Identify plant proteins that act downstream of M3Kε to mediate PTI; 3. Investigate how and where Mai5 interacts with M3Kε in the plant cell; 4. Examine the mechanism by which Mai5 contributes to PTI. Changes in research directions: We did not find convincing evidence for the involvement of M3Kε in PTI signaling and substituted objectives 1 and 3 with research activities aimed at the analysis of transcriptomic profiles of tomato plants during the onset of plant immunity, isolation of the novel tomato PRR FLS3, and investigation of the involvement of the RLCKBSKs in PTI. Main achievements during this research program are in the following major areas: 1. Functional characterization of Mai5. The function of Mai5 in PTI signaling was demonstrated by testing the effect of silencing the Mai5 gene by virus-induced gene silencing (VIGS) experiments and in cell death assays. Domains of Mai5 that interact with MAPKKKs and subcellular localization of Mai5 were analyzed in detail. 2. Analysis of transcriptional profiles during the tomato immune responses to Pseudomonas syringae (Pombo et al., 2014). We identified tomato genes whose expression is induced specifically in PTI or in effector-triggered immunity (ETI). Thirty ETI-specific genes were examined by VIGS for their involvement in immunity and the MAPKKK EPK1, was found to be required for ETI. 3. Dissection of MAP kinase cascades downstream of M3Kε (Oh et al., 2013; Teper et al., 2015). We identified genes that encode positive (SGT and EDS1) and negative (WRKY1 and WRKY2) regulators of the ETI-associated cell death mediated by M3Kε. In addition, the MKK2 MAPKK, which acts downstream of M3Kε, was found to interact with the MPK3 MAPK and specific MPK3 amino acids involved interaction were identified and found to be required for induction of cell death. We also identified 5 type III effectors of the bacterial pathogen Xanthomonaseuvesicatoria that inhibited cell death induced by components of ETI-associated MAP kinase cascades. 4. Isolation of the tomato PRR FLS3 (Hind et al., submitted). FLS3, a novel PRR of the LRR-RLK family that specifically recognizes the flagellinepitope flgII-28 was isolated. FLS3 was shown to bind flgII-28, to require kinase activity for function, to act in concert with BAK1, and to enhance disease resistance to Pseudomonas syringae. 5. Functional analysis of RLCKs of the brassinosteroid signaling kinase (BSK) family.Arabidopsis and tomato BSKs were found to interact with PRRs. In addition, certain ArabidospsisBSK mutants were found to be impaired in PAMP-induced resistance to Pseudomonas syringae. Scientific and agricultural significance: Our research activities discovered and characterized new molecular components of signaling pathways mediating recognition of invading pathogens and activation of immune responses against them. Increased understanding of molecular mechanisms of immunity will allow them to be manipulated by both molecular breeding and genetic engineering to produce plants with enhanced natural defense against disease.


2020 ◽  
Vol 21 (24) ◽  
pp. 9560
Author(s):  
Francesco Monticolo ◽  
Emanuela Palomba ◽  
Maria Luisa Chiusano

The main hallmarks of cancer diseases are the evasion of programmed cell death, uncontrolled cell division, and the ability to invade adjacent tissues. The explosion of omics technologies offers challenging opportunities to identify molecular agents and processes that may play relevant roles in cancer. They can support comparative investigations, in one or multiple experiments, exploiting evidence from one or multiple species. Here, we analyzed gene expression data from induction of programmed cell death and stress response in Homo sapiens and compared the results with Saccharomyces cerevisiae gene expression during the response to cell death. The aim was to identify conserved candidate genes associated with Homo sapiens cell death, favored by crosslinks based on orthology relationships between the two species. We identified differentially-expressed genes, pathways that are significantly dysregulated across treatments, and characterized genes among those involved in induced cell death. We investigated on co-expression patterns and identified novel genes that were not expected to be associated with death pathways, that have a conserved pattern of expression between the two species. Finally, we analyzed the resulting list by HumanNet and identified new genes predicted to be involved in cancer. The data integration and the comparative approach between distantly-related reference species that were here exploited pave the way to novel discoveries in cancer therapy and also contribute to detect conserved genes potentially involved in programmed cell death.


2004 ◽  
Vol 17 (12) ◽  
pp. 1328-1336 ◽  
Author(s):  
Li Kang ◽  
Xiaoyan Tang ◽  
Kirankumar S. Mysore

Many gram-negative bacterial pathogens rely on a type III secretion system to deliver a number of effector proteins into the host cell. Though a number of these effectors have been shown to contribute to bacterial pathogenicity, their functions remain elusive. Here we report that AvrPto, an effector known for its ability to interact with Pto and induce Pto-mediated disease resistance, inhibited the hypersensitive response (HR) induced by nonhost pathogen interactions. Pseudomonas syringae pv. tomato T1 causes an HR-like cell death on Nicotiana benthamiana. This rapid cell death was delayed significantly in plants inoculated with P. syringae pv. tomato expressing avrPto. In addition, P. syringae pv. tabaci expressing avrPto suppressed nonhost HR on tomato prf3 and ptoS lines. Transient expression of avrPto in both N. benthamiana and tomato prf3 plants also was able to suppress nonhost HR. Interestingly, AvrPto failed to suppress cell death caused by other elicitors and nonhost pathogens. AvrPto also failed to suppress cell death caused by certain gene-for-gene disease resistance interactions. Experiments with avrPto mutants revealed several residues important for the suppression effects. AvrPto mutants G2A, G99V, P146L, and a 12-amino-acid C-terminal deletion mutant partially lost the suppression ability, whereas S94P and I96T enhanced suppression of cell death in N. benthamiana. These results, together with other discoveries, demonstrated that suppression of host-programmed cell death may serve as one of the strategies bacterial pathoens use for successful invasion.


2020 ◽  
Vol 21 (17) ◽  
pp. 6050 ◽  
Author(s):  
Xiaoxiao Zhang ◽  
Mei Zhao ◽  
Jie Jiang ◽  
Linlin Yang ◽  
Yuwen Yang ◽  
...  

Bacterial fruit blotch (BFB), caused by Acidovorax citrulli, seriously affects watermelon and other cucurbit crops, resulting in significant economic losses. However, the pathogenicity mechanism of A. citrulli is not well understood. Plant pathogenic bacteria often suppress the plant immune response by secreting effector proteins. Thus, identifying A. citrulli effector proteins and determining their functions may improve our understanding of the underlying pathogenetic mechanisms. In this study, a novel effector, AopN, which is localized on the cell membrane of Nicotiana benthamiana, was identified. The functional analysis revealed that AopN significantly inhibited the flg22-induced reactive oxygen species burst. AopN induced a programmed cell death (PCD) response. Unlike its homologous protein, the ability of AopN to induce PCD was dependent on two motifs of unknown functions (including DUP4129 and Cpta_toxin), but was not dependent on LXXLL domain. More importantly, the virulence of the aopN mutant of A. citrulli in N. benthamiana significantly decreased, indicating that it was a core effector. Further analysis revealed that AopN interacted with watermelon ClHIPP and ClLTP, which responds to A. citrulli strain Aac5 infection at the transcription level. Collectively, these findings indicate that AopN suppresses plant immunity and activates the effector-triggered immunity pathway.


Sign in / Sign up

Export Citation Format

Share Document