scholarly journals Sequencing and Heterologous Expression of an Epimerase and Two Lyases from Iminodisuccinate-Degrading Bacteria

2006 ◽  
Vol 72 (4) ◽  
pp. 2824-2828 ◽  
Author(s):  
Bettina Bäuerle ◽  
Željko Cokesa ◽  
Silvia Hofmann ◽  
Paul-Gerhard Rieger

ABSTRACT Recently, degradation of all existing epimers of the complexing agent iminodisuccinate (IDS) in the bacterial strain Agrobacterium tumefaciens BY6 was proven to depend on an epimerase and a C-N lyase (Cokesa et al., Appl. Environ. Microbiol. 70:3941-3947, 2004). In the bacterial strain Ralstonia sp. strain SLRS7, a corresponding C-N lyase is responsible for the initial degradation step (Cokesa et al., Biodegradation 15:229-239, 2004). The ite gene, encoding the IDS-transforming epimerase, and the genes icl B and icl S, encoding the IDS-converting BY6-lyase and SLRS7-lyase, respectively, were cloned and sequenced. The epimerase gene encodes a protein with a predicted subunit molecular mass of 47.6 kDa. The highest degree of epimerase amino acid sequence identities was found with proteins of unknown function, indicating a novel protein. For the lyases, the deduced amino acid sequences show high similarity to enzymes of the fumarase II family. A classification into a new subfamily within the enzyme family is proposed. The subunit molecular masses of the lyases were calculated to be 54.4 and 54.7 kDa, respectively. In Agrobacterium tumefaciens BY6, the ite gene was on an approximately 180-kb circular plasmid, whereas the icl B gene was chromosomal like the corresponding icl S gene in Ralstonia sp. strain SLRS7. Heterologous expression in Escherichia coli and subsequent purification revealed recombinant enzymes with in vitro activity similar to that of the corresponding enzymes from the wild-type strains.

2001 ◽  
Vol 183 (6) ◽  
pp. 1954-1960 ◽  
Author(s):  
Grit Zarnt ◽  
Thomas Schräder ◽  
Jan R. Andreesen

ABSTRACT The quinohemoprotein tetrahydrofurfuryl alcohol dehydrogenase (THFA-DH) from Ralstonia eutropha strain Bo was investigated for its catalytic properties. The apparentk cat/Km andK i values for several substrates were determined using ferricyanide as an artificial electron acceptor. The highest catalytic efficiency was obtained with n-pentanol exhibiting a k cat/Km value of 788 × 104 M−1 s−1. The enzyme showed substrate inhibition kinetics for most of the alcohols and aldehydes investigated. A stereoselective oxidation of chiral alcohols with a varying enantiomeric preference was observed. Initial rate studies using ethanol and acetaldehyde as substrates revealed that a ping-pong mechanism can be assumed for in vitro catalysis of THFA-DH. The gene encoding THFA-DH from R. eutropha strain Bo (tfaA) has been cloned and sequenced. The derived amino acid sequence showed an identity of up to 67% to the sequence of various quinoprotein and quinohemoprotein dehydrogenases. A comparison of the deduced sequence with the N-terminal amino acid sequence previously determined by Edman degradation analysis suggested the presence of a signal sequence of 27 residues. The primary structure of TfaA indicated that the protein has a tertiary structure quite similar to those of other quinoprotein dehydrogenases.


Pharmacology ◽  
2017 ◽  
Vol 101 (1-2) ◽  
pp. 64-71 ◽  
Author(s):  
Tetsuhiro Horie ◽  
Kazuya Fukasawa ◽  
Takashi Iezaki ◽  
Gyujin Park ◽  
Yuki Onishi ◽  
...  

The availability of amino acid in the brown adipose tissue (BAT) has been shown to be altered under various conditions; however, little is known about the possible expression and pivotal role of amino acid transporters in BAT under physiological and pathological conditions. The present study comprehensively investigated whether amino acid transporters are regulated by obesogenic conditions in BAT in vivo. Moreover, we investigated the mechanism underlying the regulation of the expression of amino acid transporters by various stressors in brown adipocytes in vitro. The expression of solute carrier family 38 member 1 (Slc38a1; gene encoding sodium-coupled neutral amino acid transporter 1) was preferentially upregulated in the BAT of both genetic and acquired obesity mice in vivo. Moreover, the expression of Slc38a1 was induced by hypoxic stress through hypoxia-inducible factor-1α, which is a master transcription factor of the adaptive response to hypoxic stress, in brown adipocytes in vitro. These results indicate that Slc38a1 is an obesity-associated gene in BAT and a hypoxia-responsive gene in brown adipocytes.


2016 ◽  
Author(s):  
Wesley G. Chen ◽  
Jacob Witten ◽  
Scott C. Grindy ◽  
Niels Holten-Andersen ◽  
Katharina Ribbeck

AbstractThe nuclear pore complex controls the passage of molecules via hydrophobic phenylalanine-glycine (FG) domains on nucleoporins. Such FG-domains consist of repeating units of FxFG, FG, or GLFG sequences, which can be interspersed with highly charged amino acid sequences. Despite the high density of charge exhibited in certain FG-domains, if and how charge influences FG-domain self-assembly and selective binding of nuclear transport receptors is largely unexplored. Studying how individual charged amino acids contribute to nuclear pore selectivity is challenging with modern in vivo and in vitro techniques due to the complexity of nucleoporin sequences. Here, we present a rationally designed approach to deconstruct essential components of nucleoporins down to 14 amino acid sequences. With these nucleoporin-based peptides, we systematically dissect how charge type and placement of charge influences self-assembly and selective binding of FG-containing gels. Specifically, we find that charge type determines which hydrophobic substrates FG sequences recognize while spatial localization of charge tunes hydrophobic self-assembly and receptor selectivity of FG sequences.


2021 ◽  
Author(s):  
Amrutha Bindu ◽  
Lakshmi Devi

Abstract The focus of present study was to characterize antimicrobial peptide produced by probiotic cultures, Enterococcus durans DB-1aa (MCC4243), Lactobacillus plantarum Cu2-PM7 (MCC4246) and Lactobacillus fermentum Cu3-PM8 (MCC4233) against Staphylococus aureus and E. coli. The growth kinetic assay revealed 24 h of incubation to be optimum for bacteriocin production. The partially purified compound after ion-exchange chromatography was found to be thermoresistant and stable under wide range of pH. The compound was sensitive to proteinase-K, but resistant to trypsin, a-amylase and lipase. The apparent molecular weight of bacteriocin from MCC4243 and MCC4246 was found to be 3.5 KDa. Translated partial amino acid sequence of plnA gene in MCC4246 displayed 48 amino acid sequences showing 100% similarity with plantaricin A of Lactobacillus plantarum (WP_0036419). The sequence revealed 7 β sheets, 6 α sheets, 6 predicted coils and 9 predicted turns. The functions on cytoplasm show 10.82 isoelectric point and 48.6% hydrophobicity. The molecular approach of using Geneious Prime software and protein prediction data base for characterization of bacteriocin is novel and predicts “KSSAYSLQMGATAIKQVKKLFKKWGW” as peptide responsible for antimicrobial activity. The study provides information about broad spectrum bacteriocin in native probiotic culture and paves a way towards its application in functional foods as biopreservative agents.


Author(s):  
Siyan Zhao ◽  
Chen Zhang ◽  
Matthew J. Rogers ◽  
Xuejie Zhao ◽  
Jianzhong He

As a group, Dehalococcoides dehalogenate a wide range of organohalide pollutants but the range of organohalide compounds that can be utilized for reductive dehalogenation differs among the Dehalococcoides strains. Dehalococcoides lineages cannot be reliably disambiguated in mixed communities using typical phylogenetic markers, which often confounds bioremediation efforts. Here, we describe a computational approach to identify Dehalococcoides genetic markers with improved discriminatory resolution. Screening core genes from the Dehalococcoides pangenome for degree of similarity and frequency of 100% identity found a candidate genetic marker encoding a bacterial neuraminidase repeat (BNR)-containing protein of unknown function. This gene exhibits the fewest completely identical amino acid sequences and among the lowest average amino acid sequence identity in the core pangenome. Primers targeting BNR could effectively discriminate between 40 available BNR sequences ( in silico ) and 10 different Dehalococcoides isolates ( in vitro ). Amplicon sequencing of BNR fragments generated from 22 subsurface soil samples revealed a total of 109 amplicon sequence variants, suggesting a high diversity of Dehalococcoides distributed in environment. Therefore, the BNR gene can serve as an alternative genetic marker to differentiate strains of Dehalococcoides in complicated microbial communities. Importance The challenge of discriminating between phylogenetically similar but functionally distinct bacterial lineages is particularly relevant to the development of technologies seeking to exploit the metabolic or physiological characteristics of specific members of bacterial genera. A computational approach was developed to expedite screening of potential genetic markers among phylogenetically affiliated bacteria. Using this approach, a gene encoding a bacterial neuraminidase repeat (BNR)-containing protein of unknown function was selected and evaluated as a genetic marker to differentiate strains of Dehalococcoides , an environmentally relevant genus of bacteria whose members can transform and detoxify a range of halogenated organic solvents and persistent organic pollutants, in complex microbial communities to demonstrate the validity of the approach. Moreover, many apparently phylogenetically distinct, currently uncharacterized Dehalococcoides were detected in environmental samples derived from contaminated sites.


1998 ◽  
Vol 42 (5) ◽  
pp. 1245-1248 ◽  
Author(s):  
François Sanschagrin ◽  
Julien Dufresne ◽  
Roger C. Levesque

ABSTRACT We have determined the nucleotide sequence of the blaSgene encoding the carbapenem-hydrolyzing L-1 β-lactamase fromStenotrophomonas maltophilia GN12873. Analysis of the DNA and deduced amino acid sequences identified a product of 290 amino acids. Comparisons of the L-1 amino acid sequence with those of other zinc β-lactamases showed 88.6% identity with the L-1 enzyme fromS. maltophilia IID1275 and less than 20% identity with other class B metalloenzymes.


1976 ◽  
Vol 231 (2) ◽  
pp. 573-578 ◽  
Author(s):  
JM Berkowitz ◽  
M Praissman ◽  
ME LeFevre

The actions of human synthetic gastrin I(G), the C-terminal tetrapeptide of gastrin (T), and the C-terminal octapeptide of cholecystokinin (OP) on acid secretion and transepithelial potential difference (PD) of the isolated Necturus gastric mucosa were determined. All three peptides induced H+ secretion, but the maximum H+ output was less with OP than with G or T. G and OP produced their maximum H+ output at lower molar concentrations than T. G- and OP-stimulated secretion was long sustained, but T-stimulated secretion rapidly returned to basal levels. T- and G-stimulated secretion was partially inhibited by the addition of OP. Evidence is presented that T rapidly disappears from solutions exposed to gastric mucosa, whereas G does not. Washing sensitized the mucosa to subsequent addition of T. The results suggest that the action of the common C-terminal tetrapeptide of G, T, and OP is modified by the preceding amino acid sequences, and that T, the smallest of the three peptides, is rapidly degraded by gastric tissue in vitro. The implications of the work for the study of gastrointestinal hormone structure-function relationships in isolated tissue preparations are discussed.


1999 ◽  
Vol 65 (8) ◽  
pp. 3279-3286 ◽  
Author(s):  
Qiaoping Yuan ◽  
James J. Pestka ◽  
Brandon M. Hespenheide ◽  
Leslie A. Kuhn ◽  
John E. Linz ◽  
...  

ABSTRACT Monoclonal antibody 6F5 (mAb 6F5), which recognizes the mycotoxin deoxynivalenol (DON) (vomitoxin), was used to select for peptides that mimic the mycotoxin by employing a library of filamentous phages that have random 7-mer peptides on their surfaces. Two phage clones selected from the random peptide phage-displayed library coded for the amino acid sequences SWGPFPF and SWGPLPF. These clones were designated DONPEP.2 and DONPEP.12, respectively. The results of a competitive enzyme-linked immunosorbent assay (ELISA) suggested that the two phage displayed peptides bound to mAb 6F5 specifically at the DON binding site. The amino acid sequence of DONPEP.2 plus a structurally flexible linker at the C terminus (SWGPFPFGGGSC) was synthesized and tested to determine its ability to bind to mAb 6F5. This synthetic peptide (designated peptide C430) and DON competed with each other for mAb 6F5 binding. When translationally fused with bacterial alkaline phosphatase, DONPEP.2 bound specifically to mAb 6F5, while the fusion protein retained alkaline phosphatase activity. The potential of using DONPEP.2 as an immunochemical reagent in a DON immunoassay was evaluated with a DON-spiked wheat extract. When peptide C430 was conjugated to bovine serum albumin, it elicited antibody specific to peptide C430 but not to DON in both mice and rabbits. In an in vitro translation system containing rabbit reticulocyte lysate, synthetic peptide C430 did not inhibit protein synthesis but did show antagonism toward DON-induced protein synthesis inhibition. These data suggest that the peptides selected in this study bind to mAb 6F5 and that peptide C430 binds to ribosomes at the same sites as DON.


Marine Drugs ◽  
2019 ◽  
Vol 18 (1) ◽  
pp. 23 ◽  
Author(s):  
Reza Ghanei-Motlagh ◽  
Takavar Mohammadian ◽  
Darioush Gharibi ◽  
Simon Menanteau-Ledouble ◽  
Esmaeil Mahmoudi ◽  
...  

Quorum quenching (QQ), the enzymatic degradation of N-acyl homoserine lactones (AHLs), has been suggested as a promising strategy to control bacterial diseases. In this study, 10 AHL-degrading bacteria isolated from the intestine of barramundi were identified by 16S rDNA sequencing. They were able to degrade both short and long-chain AHLs associated with several pathogenic Vibrio species (spp.) in fish, including N-[(RS)-3-Hydroxybutyryl]-l-homoserine lactone (3-oh-C4-HSL), N-Hexanoyl-l-homoserine lactone (C6-HSL), N-(β-Ketocaproyl)-l-homoserine lactone (3-oxo-C6-HSL), N-(3-Oxodecanoyl)-l-homoserine lactone (3-oxo-C10-HSL), N-(3-Oxotetradecanoyl)-l-homoserine lactone (3-oxo-C14-HSL). Five QQ isolates (QQIs) belonging to the Bacillus and Shewanella genera, showed high capacity to degrade both synthetic AHLs as well as natural AHLs produced by Vibrio harveyi and Vibrio alginolyticus using the well-diffusion method and thin-layer chromatography (TLC). The genes responsible for QQ activity, including aiiA, ytnP, and aaC were also detected. Analysis of the amino acid sequences from the predicted lactonases revealed the presence of the conserved motif HxHxDH. The selected isolates were further characterized in terms of their probiotic potentials in vitro. Based on our scoring system, Bacillus thuringiensis QQ1 and Bacillus cereus QQ2 exhibited suitable probiotic characteristics, including the production of spore and exoenzymes, resistance to bile salts and pH, high potential to adhere on mucus, appropriate growth abilities, safety to barramundi, and sensitivity to antibiotics. These isolates, therefore, constitute new QQ probiotics that could be used to control vibriosis in Lates calcalifer.


Sign in / Sign up

Export Citation Format

Share Document