scholarly journals Human Skin Endothelial Cells Can Express All 10 TLR Genes and Respond to Respective Ligands

2007 ◽  
Vol 15 (1) ◽  
pp. 138-146 ◽  
Author(s):  
Nicole Fitzner ◽  
Sigrid Clauberg ◽  
Frank Essmann ◽  
Joerg Liebmann ◽  
Victoria Kolb-Bachofen

ABSTRACT Breakdown of the skin barrier requires the recognition of and rapid responses to invading pathogens. Since wounding usually also affects endothelial intactness, the expression of receptors of the Toll-like family involved in pathogen recognition in human skin vessel endothelia was examined. We found that human skin-derived microvascular endothelial cells can express all 10 Toll-like receptors (TLRs) currently known and will respond to respective ligands. Using immortalized skin-derived (HMEC-1) and primary dermal endothelial cells (HDMEC), we screened for TLR expression by real-time PCR. Endothelial cells express 7 (for HDMEC) and 8 (for HMEC-1) of the 10 known human TLRs under resting conditions but can express all 10 receptors in proinflammatory conditions. To provide evidence of TLR functionality, endothelial cells were challenged with TLR ligands, and after the TLR downstream signaling, MyD88 recruitment as well as early (interleukin-8 [IL-8] release) and late immune markers (inducible nitric oxide synthase mRNA expression) were monitored. Surprisingly, the responses observed were not uniform but were highly specific depending on the respective TLR ligand. For instance, lipopolysaccharides highly increased IL-8 release, but CpG DNA induced significant suppression. Additionally, TLR-specific responses were found to differ between resting and activated endothelial cells. These results show that human skin-derived endothelial cells can function as an important part of the innate immune response, can actively sense pathogen-associated molecular patterns, and can mount an increased or reduced inflammatory signal upon exposure to any of the currently known TLR ligands. Moreover, we also show here that proinflammatory conditions may affect TLR expression in a specific and nonuniform pattern.

2020 ◽  
Vol 21 (8) ◽  
pp. 2798
Author(s):  
Alessandra Cazzaniga ◽  
Roberta Scrimieri ◽  
Elisa Giani ◽  
Gian Vincenzo Zuccotti ◽  
Jeanette A. M. Maier

Type 1 Diabetes Mellitus (T1D) is associated with accelerated atherosclerosis that is responsible for high morbidity and mortality. Endothelial hyperpermeability, a feature of endothelial dysfunction, is an early step of atherogenesis since it favours intimal lipid uptake. Therefore, we tested endothelial leakage by loading the sera from T1D patients onto cultured human endothelial cells and found it increased by hyperglycaemic sera. These results were phenocopied in endothelial cells cultured in a medium containing high concentrations of glucose, which activates inducible nitric oxide synthase with a consequent increase of nitric oxide. Inhibition of the enzyme prevented high glucose-induced hyperpermeability, thus pointing to nitric oxide as the mediator involved in altering the endothelial barrier function. Since nitric oxide is much higher in sera from hyperglycaemic than normoglycaemic T1D patients, and the inhibition of inducible nitric oxide synthase prevents sera-dependent increased endothelial permeability, this enzyme might represent a promising biochemical marker to be monitored in T1D patients to predict alterations of the vascular wall, eventually promoting intimal lipid accumulation.


Life Sciences ◽  
2000 ◽  
Vol 67 (24) ◽  
pp. 2983-2989 ◽  
Author(s):  
Zhiyuan Li ◽  
Yasuharu Niwa ◽  
Sadaichi Sakamoto ◽  
Masayuki Shono ◽  
Xiu Chen ◽  
...  

2003 ◽  
Vol 285 (2) ◽  
pp. C489-C498 ◽  
Author(s):  
Karsten Hemmrich ◽  
Christoph V. Suschek ◽  
Guido Lerzynski ◽  
Oliver Schnorr ◽  
Victoria Kolb-Bachofen

The inhibition of inducible nitric oxide synthase (iNOS) expression via antisense oligonucleotides (AS-ODN) may represent a highly specific tool. Endothelial cells (EC) represent prime candidate cells for in vivo application, and we therefore aimed at optimizing this technique for effectiveness and specificity in primary nontransformed rat EC. EC or L929 fibroblasts were incubated with iNOS-specific ODN optimizing all experimental steps. We find that ODN uptake, as analyzed by fluorescence microscopy and labeled ODN, was absolutely dependent on vehicle presence, and among the vehicles tested, Lipofectin displayed negligible toxicity and good uptake. In addition, omission of serum was also essential, a factor that might limit its use in vivo. Moreover, intranuclear accumulation of AS-ODN appeared crucial for successive inhibition. The impact of ODN on iNOS mRNA, protein, and enzyme activity was specific and resulted in >95% inhibition of protein formation. In conclusion, in this article we provide a protocol for an optimized AS-mediated knockdown, representing a specific and efficient instrument for blocking of iNOS formation and allowing for studying the impact of iNOS expression on endothelial function. We also expose application problems of this technique when working in inflammatory conditions.


Sign in / Sign up

Export Citation Format

Share Document