scholarly journals Trypanosoma brucei Translation Initiation Factor Homolog EIF4E6 Forms a Tripartite Cytosolic Complex with EIF4G5 and a Capping Enzyme Homolog

2014 ◽  
Vol 13 (7) ◽  
pp. 896-908 ◽  
Author(s):  
Eden R. Freire ◽  
Amaranta M. Malvezzi ◽  
Ajay A. Vashisht ◽  
Joanna Zuberek ◽  
Edwin A. Saada ◽  
...  

ABSTRACT Trypanosomes lack the transcriptional control characteristic of the majority of eukaryotes that is mediated by gene-specific promoters in a one-gene–one-promoter arrangement. Rather, their genomes are transcribed in large polycistrons with no obvious functional linkage. Posttranscriptional regulation of gene expression must thus play a larger role in these organisms. The eIF4E homolog TbEIF4E6 binds mRNA cap analogs in vitro and is part of a complex in vivo that may fulfill such a role. Knockdown of TbEIF4E6 tagged with protein A-tobacco etch virus protease cleavage site-protein C to approximately 15% of the normal expression level resulted in viable cells that displayed a set of phenotypes linked to detachment of the flagellum from the length of the cell body, if not outright flagellum loss. While these cells appeared and behaved as normal under stationary liquid culture conditions, standard centrifugation resulted in a marked increase in flagellar detachment. Furthermore, the ability of TbEIF4E6-depleted cells to engage in social motility was reduced. The TbEIF4E6 protein forms a cytosolic complex containing a triad of proteins, including the eIF4G homolog TbEIF4G5 and a hypothetical protein of 70.3 kDa, referred to as TbG5-IP. The TbG5-IP analysis revealed two domains with predicted secondary structures conserved in mRNA capping enzymes: nucleoside triphosphate hydrolase and guanylyltransferase. These complex members have the potential for RNA interaction, either via the 5′ cap structure for TbEIF4E6 and TbG5-IP or through RNA-binding domains in TbEIF4G5. The associated proteins provide a signpost for future studies to determine how this complex affects capped RNA molecules.

Blood ◽  
2011 ◽  
Vol 118 (12) ◽  
pp. 3290-3300 ◽  
Author(s):  
Rajkumar Noubade ◽  
Dimitry N. Krementsov ◽  
Roxana del Rio ◽  
Tina Thornton ◽  
Viswas Nagaleekar ◽  
...  

Abstract Although several transcription factors have been shown to be critical for the induction and maintenance of IL-17 expression by CD4 Th cells, less is known about the role of nontranscriptional mechanisms. Here we show that the p38 MAPK signaling pathway is essential for in vitro and in vivo IL-17 production by regulating IL-17 synthesis in CD4 T cells through the activation of the eukaryotic translation initiation factor 4E/MAPK-interacting kinase (eIF-4E/MNK) pathway. We also show that p38 MAPK activation is required for the development and progression of both chronic and relapsing-remitting forms of experimental allergic encephalomyelitis (EAE), the principal autoimmune model of multiple sclerosis. Furthermore, we show that regulation of p38 MAPK activity specifically in T cells is sufficient to modulate EAE severity. Thus, mechanisms other than the regulation of gene expression also contribute to Th17 cell effector functions and, potentially, to the pathogenesis of other Th17 cell–mediated diseases.


2020 ◽  
Vol 117 (20) ◽  
pp. 10935-10945 ◽  
Author(s):  
Shanta Karki ◽  
Kathrina Castillo ◽  
Zhaolan Ding ◽  
Olivia Kerr ◽  
Teresa M. Lamb ◽  
...  

The circadian clock in eukaryotes controls transcriptional and posttranscriptional events, including regulation of the levels and phosphorylation state of translation factors. However, the mechanisms underlying clock control of translation initiation, and the impact of this potential regulation on rhythmic protein synthesis, were not known. We show that inhibitory phosphorylation of eIF2α (P-eIF2α), a conserved translation initiation factor, is clock controlled in Neurospora crassa, peaking during the subjective day. Cycling P-eIF2α levels required rhythmic activation of the eIF2α kinase CPC-3 (the homolog of yeast and mammalian GCN2), and rhythmic activation of CPC-3 was abolished under conditions in which the levels of charged tRNAs were altered. Clock-controlled accumulation of P-eIF2α led to reduced translation during the day in vitro and was necessary for the rhythmic synthesis of select proteins in vivo. Finally, loss of rhythmic P-eIF2α levels led to reduced linear growth rates, supporting the idea that partitioning translation to specific times of day provides a growth advantage to the organism. Together, these results reveal a fundamental mechanism by which the clock regulates rhythmic protein production, and provide key insights into how rhythmic translation, cellular energy, stress, and nutrient metabolism are linked through the levels of charged versus uncharged tRNAs.


1999 ◽  
Vol 19 (12) ◽  
pp. 8422-8432 ◽  
Author(s):  
Olivier Donzé ◽  
Didier Picard

ABSTRACT The protein kinase Gcn2 stimulates translation of the yeast transcription factor Gcn4 upon amino acid starvation. Using genetic and biochemical approaches, we show that Gcn2 is regulated by the molecular chaperone Hsp90 in budding yeast Saccharomyces cerevisiae. Specifically, we found that (i) several Hsp90 mutant strains exhibit constitutive expression of a GCN4-lacZ reporter plasmid; (ii) Gcn2 and Hsp90 form a complex in vitro as well as in vivo; (iii) the specific inhibitors of Hsp90, geldanamycin and macbecin I, enhance the association of Gcn2 with Hsp90 and inhibit its kinase activity in vitro; (iv) in vivo, macbecin I strongly reduces the levels of Gcn2; (v) in a strain expressing the temperature-sensitive Hsp90 mutant G170D, both the accumulation and activity of Gcn2 are abolished at the restrictive temperature; and (vi) the Hsp90 cochaperones Cdc37, Sti1, and Sba1 are required for the response to amino acid starvation. Taken together, these data identify Gcn2 as a novel target for Hsp90, which plays a crucial role for the maturation and regulation of Gcn2.


1991 ◽  
Vol 11 (7) ◽  
pp. 3463-3471 ◽  
Author(s):  
S R Schmid ◽  
P Linder

The eukaryotic translation initiation factor 4A (eIF-4A) possesses an in vitro helicase activity that allows the unwinding of double-stranded RNA. This activity is dependent on ATP hydrolysis and the presence of another translation initiation factor, eIF-4B. These two initiation factors are thought to unwind mRNA secondary structures in preparation for ribosome binding and initiation of translation. To further characterize the function of eIF-4A in cellular translation and its interaction with other elements of the translation machinery, we have isolated mutations in the TIF1 and TIF2 genes encoding eIF-4A in Saccharomyces cerevisiae. We show that three highly conserved domains of the D-E-A-D protein family, encoding eIF-4A and other RNA helicases, are essential for protein function. Only in rare cases could we make a conservative substitution without affecting cell growth. The mutants show a clear correlation between their growth and in vivo translation rates. One mutation that results in a temperature-sensitive phenotype reveals an immediate decrease in translation activity following a shift to the nonpermissive temperature. These in vivo results confirm previous in vitro data demonstrating an absolute dependence of translation on the TIF1 and TIF2 gene products.


1997 ◽  
Vol 17 (12) ◽  
pp. 6876-6886 ◽  
Author(s):  
S Z Tarun ◽  
A B Sachs

mRNA translation in crude extracts from the yeast Saccharomyces cerevisiae is stimulated by the cap structure and the poly(A) tail through the binding of the cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) and the poly(A) tail-binding protein Pab1p. These proteins also bind to the translation initiation factor eIF4G and thereby link the mRNA to the general translational apparatus. In contrast, uncapped, poly(A)-deficient mRNA is translated poorly in yeast extracts, in part because of the absence of eIF4E and Pab1p binding sites on the mRNA. Here, we report that uncapped-mRNA translation is also repressed in yeast extracts due to the binding of eIF4E to eIF4G. Specifically, we find that mutations which weaken the eIF4E binding site on the yeast eIF4G proteins Tif4631p and Tif4632p lead to temperature-sensitive growth in vivo and the stimulation of uncapped-mRNA translation in vitro. A mutation in eIF4E which disturbs its ability to interact with eIF4G also leads to a stimulation of uncapped-mRNA translation in vitro. Finally, overexpression of eIF4E in vivo or the addition of excess eIF4E in vitro reverses these effects of the mutations. These data support the hypothesis that the eIF4G protein can efficiently stimulate translation of exogenous uncapped mRNA in extracts but is prevented from doing so as a result of its association with eIF4E. They also suggest that some mRNAs may be translationally regulated in vivo in response to the amount of free eIF4G in the cell.


2000 ◽  
Vol 74 (18) ◽  
pp. 8252-8261 ◽  
Author(s):  
Hui Zhang ◽  
Roger J. Pomerantz ◽  
Geethanjali Dornadula ◽  
Yong Sun

ABSTRACT Virion infectivity factor (Vif) is a protein encoded by human immunodeficiency virus types 1 and 2 (HIV-1 and -2) and simian immunodeficiency virus, plus other lentiviruses, and is essential for viral replication either in vivo or in culture for nonpermissive cells such as peripheral blood lymphoid cells, macrophages, and H9 T cells. Defects in the vif gene affect virion morphology and reverse transcription but not the expression of viral components. It has been shown that Vif colocalizes with Gag in cells and Vif binds to the NCp7 domain of Gag in vitro. However, it seems that Vif is not specifically packaged into virions. The molecular mechanism(s) for Vif remains unknown. In this report, we demonstrate that HIV-1 Vif is an RNA-binding protein and specifically binds to HIV-1 genomic RNA in vitro. Further, Vif binds to HIV-1 RNA in the cytoplasm of virus-producing cells to form a 40S mRNP complex. Coimmunoprecipitation and in vivo UV cross-linking assays indicated that Vif directly interact with HIV-1 RNA in the virus-producing cells. Vif-RNA binding could be displaced by Gag-RNA binding, suggesting that Vif protein in the mRNP complex may mediate viral RNA interaction with HIV-1 Gag precursors. Furthermore, we have demonstrated that these Vif mutants that lose the RNA binding activity in vitro do not supportvif-deficient HIV-1 replication in H9 T cells, suggesting that the RNA binding capacity of Vif is important for its function. Further studies regarding Vif-RNA interaction in virus-producing cells will be important for studying the function of Vif in the HIV-1 life cycle.


2007 ◽  
Vol 27 (6) ◽  
pp. 2384-2397 ◽  
Author(s):  
Jeanne M. Fringer ◽  
Michael G. Acker ◽  
Christie A. Fekete ◽  
Jon R. Lorsch ◽  
Thomas E. Dever

ABSTRACT The translation initiation GTPase eukaryotic translation initiation factor 5B (eIF5B) binds to the factor eIF1A and catalyzes ribosomal subunit joining in vitro. We show that rapid depletion of eIF5B in Saccharomyces cerevisiae results in the accumulation of eIF1A and mRNA on 40S subunits in vivo, consistent with a defect in subunit joining. Substituting Ala for the last five residues in eIF1A (eIF1A-5A) impairs eIF5B binding to eIF1A in cell extracts and to 40S complexes in vivo. Consistently, overexpression of eIF5B suppresses the growth and translation initiation defects in yeast expressing eIF1A-5A, indicating that eIF1A helps recruit eIF5B to the 40S subunit prior to subunit joining. The GTPase-deficient eIF5B-T439A mutant accumulated on 80S complexes in vivo and was retained along with eIF1A on 80S complexes formed in vitro. Likewise, eIF5B and eIF1A remained associated with 80S complexes formed in the presence of nonhydrolyzable GDPNP, whereas these factors were released from the 80S complexes in assays containing GTP. We propose that eIF1A facilitates the binding of eIF5B to the 40S subunit to promote subunit joining. Following 80S complex formation, GTP hydrolysis by eIF5B enables the release of both eIF5B and eIF1A, and the ribosome enters the elongation phase of protein synthesis.


2020 ◽  
Vol 48 (4) ◽  
pp. 1607-1626 ◽  
Author(s):  
Pawel J Sikorski ◽  
Marcin Warminski ◽  
Dorota Kubacka ◽  
Tomasz Ratajczak ◽  
Dominika Nowis ◽  
...  

Abstract 7-Methylguanosine 5′ cap on mRNA is necessary for efficient protein expression in vitro and in vivo. Recent studies revealed structural diversity of endogenous mRNA caps, which carry different 5′-terminal nucleotides and additional methylations (2′-O-methylation and m6A). Currently available 5′-capping methods do not address this diversity. We report trinucleotide 5′ cap analogs (m7GpppN(m)pG), which are utilized by RNA polymerase T7 to initiate transcription from templates carrying Φ6.5 promoter and enable production of mRNAs differing in the identity of the first transcribed nucleotide (N = A, m6A, G, C, U) and its methylation status (±2′-O-methylation). HPLC-purified mRNAs carrying these 5′ caps were used to study protein expression in three mammalian cell lines (3T3-L1, HeLa and JAWS II). The highest expression was observed for mRNAs carrying 5′-terminal A/Am and m6Am, whereas the lowest was observed for G and Gm. The mRNAs carrying 2′-O-methyl at the first transcribed nucleotide (cap 1) had significantly higher expression than unmethylated counterparts (cap 0) only in JAWS II dendritic cells. Further experiments indicated that the mRNA expression characteristic does not correlate with affinity for translation initiation factor 4E or in vitro susceptibility to decapping, but instead depends on mRNA purity and the immune state of the cells.


2020 ◽  
Vol 48 (10) ◽  
pp. 5511-5526
Author(s):  
Tiago R Ferreira ◽  
Adam A Dowle ◽  
Ewan Parry ◽  
Eliza V C Alves-Ferreira ◽  
Karen Hogg ◽  
...  

Abstract RNA binding proteins (RBPs) are the primary gene regulators in kinetoplastids as transcriptional control is nearly absent, making Leishmania an exceptional model for investigating methylation of non-histone substrates. Arginine methylation is an evolutionarily conserved protein modification catalyzed by Protein aRginine Methyl Transferases (PRMTs). The chromatin modifier PRMT7 is the only Type III PRMT found in higher eukaryotes and a restricted number of unicellular eukaryotes. In Leishmania major, PRMT7 is a cytoplasmic protein implicit in pathogenesis with unknown substrates. Using comparative methyl-SILAC proteomics for the first time in protozoa, we identified 40 putative targets, including 17 RBPs hypomethylated upon PRMT7 knockout. PRMT7 can modify Alba3 and RBP16 trans-regulators (mammalian RPP25 and YBX2 homologs, respectively) as direct substrates in vitro. The absence of PRMT7 levels in vivo selectively reduces Alba3 mRNA-binding capacity to specific target transcripts and can impact the relative stability of RBP16 in the cytoplasm. RNA immunoprecipitation analyses demonstrate PRMT7-dependent methylation promotes Alba3 association with select target transcripts and thus indirectly stabilizes mRNA of a known virulence factor, δ-amastin surface antigen. These results highlight a novel role for PRMT7-mediated arginine methylation of RBP substrates, suggesting a regulatory pathway controlling gene expression and virulence in Leishmania. This work introduces Leishmania PRMTs as epigenetic regulators of mRNA metabolism with mechanistic insight into the functional manipulation of RBPs by methylation.


1996 ◽  
Vol 16 (11) ◽  
pp. 6295-6302 ◽  
Author(s):  
D R Taylor ◽  
S B Lee ◽  
P R Romano ◽  
D R Marshak ◽  
A G Hinnebusch ◽  
...  

The interferon-induced RNA-dependent protein kinase PKR is found in cells in a latent state. In response to the binding of double-stranded RNA, the enzyme becomes activated and autophosphorylated on several serine and threonine residues. Consequently, it has been postulated that autophosphorylation is a prerequisite for activation of the kinase. We report the identification of PKR sites that are autophosphorylated in vitro concomitantly with activation and examine their roles in the activation of PKR. Mutation of one site, threonine 258, results in a kinase that is less efficient in autophosphorylation and in phosphorylating its substrate, the initiation factor eIF2, in vitro. The mutant kinase is also impaired in vivo, displaying reduced ability to inhibit protein synthesis in yeast and mammalian cells and to induce a slow-growth phenotype in Saccharomyces cerevisiae. Mutations at two neighboring sites, serine 242 and threonine 255, exacerbated the effect. Taken together with earlier results (S. B. Lee, S. R. Green, M. B. Mathews, and M. Esteban, Proc. Natl. Acad. Sci. USA 91:10551-10555, 1994), these data suggest that the central part of the PKR molecule, lying between its RNA-binding and catalytic domains, regulates kinase activity via autophosphorylation.


Sign in / Sign up

Export Citation Format

Share Document