scholarly journals Vacuolar Protein Sorting Genes Regulate Mat Formation in Saccharomyces cerevisiae by Flo11p-Dependent and -Independent Mechanisms

2011 ◽  
Vol 10 (11) ◽  
pp. 1516-1526 ◽  
Author(s):  
Neha Sarode ◽  
Bethany Miracle ◽  
Xin Peng ◽  
Owen Ryan ◽  
Todd B. Reynolds

ABSTRACT Saccharomyces cerevisiae generates complex biofilms called mats on low-density (0.3%) agar plates. The mats can be morphologically divided into two regions: (i) hub, the interior region characterized by the presence of wrinkles and channels, and (ii) rim, the smooth periphery. Formation of mats depends on the adhesin Flo11p, which is also required for invasive growth, a phenotype in which the S. cerevisiae yeasts grow as chains of cells that dig into standard-density (2%) agar plates. Although both invasive growth and mat formation depend on Flo11p, mutations that perturb the multivesicular body (MVB) protein sorting pathway inhibit mat formation in a FLO11 -independent manner. These mutants, represented by vps27 Δ, disrupt mat formation but do not affect invasive growth, FLO11 gene or protein expression, or Flo11p localization. In contrast, an overlapping subset of MVB mutants (represented by ESCRT [endosomal sorting complex required for transport] complex genes such as VPS25 ) interrupt the Rim101p signal transduction cascade, which is required for FLO11 expression, and thus block both invasive growth and mat formation. In addition, this report shows that mature Flo11p is covalently associated with the cell wall and shed into the extracellular matrix of the growing mat.

2006 ◽  
Vol 84 (4) ◽  
pp. 551-564 ◽  
Author(s):  
Robert T. Mullen ◽  
Andrew W. McCartney ◽  
C. Robb Flynn ◽  
Graham S.T. Smith

Peroxisomes are highly dynamic organelles with regard to their metabolic functions, shapes, distribution, movements, and biogenesis. They are also important as sites for the development of some viral pathogens. It has long been known that certain members of the tombusvirus family recruit peroxisomes for viral RNA replication and that this process is accompanied by dramatic changes in peroxisome morphology, the most remarkable of which is the extensive inward vesiculation of the peroxisomal boundary membrane leading to the formation of a peroxisomal multivesicular body (pMVB). While it is unclear how the internal vesicles of a pMVB form, they appear to serve in effectively concentrating viral membrane-bound replication complexes and protecting nascent viral RNAs from host-cell defences. Here, we review briefly the biogenesis of peroxisomes and pMVBs and discuss recent studies that have begun to shed light on how components of the tombusvirus replicase exploit the molecular mechanisms involved in peroxisome membrane protein sorting. We also address the question of what controls invagination and vesicle formation at the peroxisomal membrane during pMVB biogenesis. We propose that tombusviruses exploit protein constituents of the class E vacuolar protein-sorting pathway referred to as ESCRT (endosomal sorting complex required for transport) in the formation of pMVBs. This new pMVB–ESCRT hypothesis reconciles current paradigms of pMVB biogenesis with the role of ESCRT in endosomal multivesicular body formation and the ability of enveloped RNA viruses, including HIV, to appropriate the ESCRT machinery to execute their budding programme from cells.


2007 ◽  
Vol 18 (2) ◽  
pp. 646-657 ◽  
Author(s):  
Andrea J. Oestreich ◽  
Brian A. Davies ◽  
Johanna A. Payne ◽  
David J. Katzmann

The multivesicular body (MVB) sorting pathway impacts a variety of cellular functions in eukaryotic cells. Perhaps the best understood role for the MVB pathway is the degradation of transmembrane proteins within the lysosome. Regulation of cargo selection by this pathway is critically important for normal cell physiology, and recent advances in our understanding of this process have highlighted the endosomal sorting complexes required for transport (ESCRTs) as pivotal players in this reaction. To better understand the mechanisms of cargo selection during MVB sorting, we performed a genetic screen to identify novel factors required for cargo-specific selection by this pathway and identified the Mvb12 protein. Loss of Mvb12 function results in differential defects in the selection of MVB cargoes. A variety of analyses indicate that Mvb12 is a stable member of ESCRT-I, a heterologous complex involved in cargo selection by the MVB pathway. Phenotypes displayed upon loss of Mvb12 are distinct from those displayed by the previously described ESCRT-I subunits (vacuolar protein sorting 23, -28, and -37), suggesting a distinct function than these core subunits. These data support a model in which Mvb12 impacts the selection of MVB cargoes by modulating the cargo recognition capabilities of ESCRT-I.


2013 ◽  
Vol 12 (11) ◽  
pp. 1538-1546 ◽  
Author(s):  
Barbara Sciskala ◽  
Ralf Kölling

ABSTRACT The Saccharomyces cerevisiae ESCRT-III protein Snf7 is part of an intricate interaction network at the endosomal membrane. Interaction maps of Snf7 were established by measuring the degree of binding of individual binding partners to putative binding motifs along the Snf7 sequence by glutathione S -transferase (GST) pulldown. For each interaction partner, distinct binding profiles were obtained. The following observations were made. The ESCRT-III subunits Vps20 and Vps24 showed a complementary binding pattern, suggesting a model for the series of events in the ESCRT-III functional cycle. Vps4 bound to individual Snf7 motifs but not to full-length Snf7. This suggests that Vps4 does not bind to the closed conformation of Snf7. We also demonstrate for the first time that the ALIX/Bro1 homologue Rim20 binds to the α6 helix of Snf7. Analysis of a Snf7 α6 deletion mutant showed that the α6 helix is crucial for binding of Bro1 and Rim20 in vivo and is indispensable for the multivesicular body (MVB)-sorting and Rim-signaling functions of Snf7. The Snf7Δα6 protein still appeared to be incorporated into ESCRT-III complexes at the endosomal membrane, but disassembly of the complex seemed to be defective. In summary, our study argues against the view that the ESCRT cycle is governed by single one-to-one interactions between individual components and emphasizes the network character of the ESCRT interactions.


2009 ◽  
Vol 37 (1) ◽  
pp. 204-207 ◽  
Author(s):  
Hans-Martin Herz ◽  
Andreas Bergmann

Class E Vps (vacuolar protein sorting) proteins are components of the ESCRTs (endosomal sorting complexes required for transport) which are required for protein sorting at the early endosome. Most of these genes have been identified and genetically characterized in yeast. Recent genetic studies in Drosophila have revealed the phenotypic consequences of loss of vps function in multicellular organisms. In the present paper, we review these studies and discuss a mechanism which may explain how loss of the human Tsg101 (tumour susceptibility gene 101), a vps23 orthologue, causes tumours.


2009 ◽  
Vol 37 (1) ◽  
pp. 156-160 ◽  
Author(s):  
Suman Lata ◽  
Guy Schoehn ◽  
Julianna Solomons ◽  
Ricardo Pires ◽  
Heinrich G. Göttlinger ◽  
...  

ESCRT-III (endosomal sorting complex required for transport III) is required for the formation and abscission of intraluminal endosomal vesicles, which gives rise to multivesicular bodies, budding of some enveloped viruses and cytokinesis. ESCRT-III is composed of 11 members in humans, which, except for one, correspond to the six ESCRT-III-like proteins in yeast. At least CHMP (charged multivesicular body protein) 2A and CHMP3 assemble into helical tubular structures that provide a platform for membrane interaction and VPS (vacuolar protein sorting) 4-catalysed effects leading to disassembly of ESCRT-III CHMP2A–CHMP3 polymers in vitro. Progress towards the understanding of the structures and function of ESCRT-III, its activation, its regulation by accessory factors and its role in abscission of membrane enveloped structures in concert with VPS4 are discussed.


2011 ◽  
Vol 10 (9) ◽  
pp. 1207-1218 ◽  
Author(s):  
Haresha S. Samaranayake ◽  
Ann E. Cowan ◽  
Lawrence A. Klobutcher

ABSTRACT Vacuolar protein sorting 13 (VPS13) proteins have been studied in a number of organisms, and mutations in VPS13 genes have been implicated in two human genetic disorders, but the function of these proteins is poorly understood. The TtVPS13A protein was previously identified in a mass spectrometry analysis of the Tetrahymena thermophila phagosome proteome (M. E. Jacobs et al., Eukaryot. Cell 5:1990–2000, 2006), suggesting that it is involved in phagocytosis. In this study, we analyzed the structure of the macronuclear TtVPS13A gene, which was found to be composed of 17 exons spanning 12.5 kb and was predicted to encode a protein of 3,475 amino acids (aa). A strain expressing a TtVPS13A-green fluorescent protein (GFP) fusion protein was constructed, and the protein was found to associate with the phagosome membrane during the entire cycle of phagocytosis. In addition, Tetrahymena cells with a TtVPS13A knockout mutation displayed impaired phagocytosis. Specifically, they grew slowly under conditions where phagocytosis is essential, they formed few phagosomes, and the digestion of phagosomal contents was delayed compared to wild-type cells. Overall, these results provide evidence that the TtVPS13A protein is required for efficient phagocytosis.


2009 ◽  
Vol 37 (1) ◽  
pp. 167-172 ◽  
Author(s):  
Suraj Saksena ◽  
Scott D. Emr

The ESCRT (endosomal sorting complex required for transport) machinery plays a critical role in receptor down-regulation, retroviral budding, and other normal and pathological processes. The ESCRT components are conserved in all five major subgroups of eukaryotes. This review summarizes the growing number of links identified between ESCRT-mediated protein sorting in the MVB (multivesicular body) pathway and various human diseases.


2020 ◽  
Author(s):  
Jason C. Casler ◽  
Benjamin S. Glick

AbstractThe yeast Saccharomyces cerevisiae is amenable to studying membrane traffic by live-cell fluorescence microscopy. We used this system to explore two aspects of cargo protein traffic through prevacuolar endosome (PVE) compartments to the vacuole. First, at what point during Golgi maturation does a biosynthetic vacuolar cargo depart from the maturing cisternae? To address this question, we modified a regulatable fluorescent secretory cargo by adding a vacuolar targeting signal. Traffic of the vacuolar cargo requires the GGA clathrin adaptors, which arrive during the early-to-late Golgi transition. Accordingly, the vacuolar cargo begins to exit the Golgi near the midpoint of maturation, significantly before exit of a secretory cargo. Second, how are cargoes delivered from PVE compartments to the vacuole? To address this question, we tracked biosynthetic and endocytic cargoes after they had accumulated in PVE compartments. The results imply that stable PVE compartments repeatedly deliver material to the vacuole by a kiss-and-run mechanism.


2006 ◽  
Vol 27 (2) ◽  
pp. 526-540 ◽  
Author(s):  
Galina Gabriely ◽  
Rachel Kama ◽  
Jeffrey E. Gerst

ABSTRACT Although COPI function on the early secretory pathway in eukaryotes is well established, earlier studies also proposed a nonconventional role for this coat complex in endocytosis in mammalian cells. Here we present results that suggest an involvement for specific COPI subunits in the late steps of endosomal protein sorting in Saccharomyces cerevisiae. First, we found that carboxypeptidase Y (CPY) was partially missorted to the cell surface in certain mutants of the COPIB subcomplex (COPIb; Sec27, Sec28, and possibly Sec33), which indicates an impairment in endosomal transport. Second, integral membrane proteins destined for the vacuolar lumen (i.e., carboxypeptidase S [CPS1]; Fur4, Ste2, and Ste3) accumulated at an aberrant late endosomal compartment in these mutants. The observed phenotypes for COPIb mutants resemble those of class E vacuolar protein sorting (vps) mutants that are impaired in multivesicular body (MVB) protein sorting and biogenesis. Third, we observed physical interactions and colocalization between COPIb subunits and an MVB-associated protein, Vps27. Together, our findings suggest that certain COPI subunits could have a direct role in vacuolar protein sorting to the MVB compartment.


Sign in / Sign up

Export Citation Format

Share Document