scholarly journals Gpr1, a Putative G-Protein-Coupled Receptor, Regulates Morphogenesis and Hypha Formation in the Pathogenic Fungus Candida albicans

2004 ◽  
Vol 3 (4) ◽  
pp. 919-931 ◽  
Author(s):  
Takuya Miwa ◽  
Yukinobu Takagi ◽  
Makiko Shinozaki ◽  
Cheol-Won Yun ◽  
Wiley A. Schell ◽  
...  

ABSTRACT In response to various extracellular signals, the morphology of the human fungal pathogen Candida albicans switches from yeast to hypha form. Here, we report that GPR1 encoding a putative G-protein-coupled receptor and GPA2 encoding a Gα subunit are required for hypha formation and morphogenesis in C. albicans. Mutants lacking Gpr1 (gpr1/gpr1) or Gpa2 (gpa2/gpa2) are defective in hypha formation and morphogenesis on solid hypha-inducing media. These phenotypic defects in solid cultures are suppressed by exogenously added dibutyryl-cyclic AMP (dibutyryl-cAMP). Biochemical studies also reveal that GPR1 and GPA2 are required for a glucose-dependent increase in cellular cAMP. An epistasis analysis indicates that Gpr1 functions upstream of Gpa2 in the same signaling pathway, and a two-hybrid assay reveals that the carboxyl-terminal tail of Gpr1 interacts with Gpa2. Moreover, expression levels of HWP1 and ECE1, which are cAMP-dependent hypha-specific genes, are reduced in both mutant strains. These findings support a model that Gpr1, as well as Gpa2, regulates hypha formation and morphogenesis in a cAMP-dependent manner. In contrast, GPR1 and GPA2 are not required for hypha formation in liquid fetal bovine serum (FBS) medium. Furthermore, the gpr1 and the gpa2 mutant strains are fully virulent in a mouse infection. These findings suggest that Gpr1 and Gpa2 are involved in the glucose-sensing machinery that regulates morphogenesis and hypha formation in solid media via a cAMP-dependent mechanism, but they are not required for hypha formation in liquid medium or during invasive candidiasis.

2005 ◽  
Vol 33 (1) ◽  
pp. 291-293 ◽  
Author(s):  
M.M. Maidan ◽  
J.M. Thevelein ◽  
P. Van Dijck

Yeast-to-hypha transition in Candida albicans can be induced by a wide variety of factors, including specific nutrients. We have started to investigate the mechanism by which some of these nutrients may be sensed. The G-protein-coupled receptor Gpr1 is required for yeast-to-hypha transition on various solid hypha-inducing media. Recently we have shown induction of Gpr1 internalization by specific amino acids, e.g. methionine. This suggests a possible role for methionine as a ligand of CaGpr1. Here we show that there is a big variation in methionine-induced hypha formation depending on the type of carbon source present in the medium. In addition high glucose concentrations repress hypha formation whereas a concentration of 0.1%, which mimics the glucose concentration present in the bloodstream, results in maximal hypha formation. Hence, it remains unclear whether Gpr1 senses sugars, as in Saccharomyces cerevisiae, or specific amino acids like methionine.


Endocrinology ◽  
2011 ◽  
Vol 152 (4) ◽  
pp. 1562-1571 ◽  
Author(s):  
Yinyang Bai ◽  
Fei Chang ◽  
Rong Zhou ◽  
Peng-Peng Jin ◽  
Hirokazu Matsumoto ◽  
...  

Abstract Perinatal exposure to environmental levels of bisphenol-A (BPA) impairs sexually dimorphic behaviors in rodents. Kisspeptin neurons in anteroventral periventricular nucleus (AVPV), which plays an important role in the activation of GnRH neurons and the initiation of LH-surge, have been suggested to be sexual dimorphism in rats. This study focused on exploring the influence of a perinatal exposure to an environmental dose of BPA on the development and maturation of male AVPV kisspeptin neurons and hypothalamus-pituitary-gonadal axis. Female rats were injected sc with 2 μg BPA/kg·d from gestation d 10 through lactation d 7. Anatomical and functional changes in AVPV kisspeptin neurons and hypothalamus-pituitary-gonadal axis were examined in prepubertal, pubertal, and adult male rats exposed perinatally to BPA (BPA-rats). Here, we show that in postnatal d (PND)30/50/90 BPA-rats, the number of AVPV kisspeptin-immunoreactive cells was persistently increased in comparison with age-matched control male rats. The number of GnRH-immunoreactive cells in PND30 BPA-rats declined approximately 40% compared with control male rats, whereas that in PND50/90 BPA-rats was increased in a G protein-coupled receptor 54-dependent manner. Estradiol could induce a stable LH-surge in PND90 BPA-rats and control female rats, which was sensitive to the G protein-coupled receptor 54 inhibitor. In PND30/50 BPA-rats, plasma level of LH was higher, but the level of testosterone was lower than control male rats. These findings provide evidence that perinatal exposure to an environmental dose of BPA causes a sustained increase in AVPV kisspeptin neurons in male rats, leading to the generation of estradiol-induced LH-surge system.


2009 ◽  
Vol 83 (16) ◽  
pp. 8141-8152 ◽  
Author(s):  
Joseph D. Sherrill ◽  
Melissa P. Stropes ◽  
Olivia D. Schneider ◽  
Diana E. Koch ◽  
Fabiola M. Bittencourt ◽  
...  

ABSTRACT The presence of numerous G protein-coupled receptor (GPCR) homologs within the herpesvirus genomes suggests an essential role for these genes in viral replication in the infected host. Such is the case for murine cytomegalovirus (MCMV), where deletion of the M33 GPCR or replacement of M33 with a signaling defective mutant has been shown to severely attenuate replication in vivo. In the present study we utilized a genetically altered version of M33 (termed R131A) in combination with pharmacological inhibitors to further characterize the mechanisms by which M33 activates downstream signaling pathways. This R131A mutant of M33 fails to support salivary gland replication in vivo and, as such, is an important tool that can be used to examine the signaling activities of M33. We show that M33 stimulates the transcription factor CREB via heterotrimeric Gq/11 proteins and not through promiscuous coupling of M33 to the Gs pathway. Using inhibitors of signaling molecules downstream of Gq/11, we demonstrate that M33 stimulates CREB transcriptional activity in a phospholipase C-β and protein kinase C (PKC)-dependent manner. Finally, utilizing wild-type and R131A versions of M33, we show that M33-mediated activation of other signaling nodes, including the mitogen-activated protein kinase family member p38α and transcription factor NF-κB, occurs in the absence of Gq/11 and PKC signaling. The results from the present study indicate that M33 utilizes multiple mechanisms to modulate intracellular signaling cascades and suggest that signaling through PLC-β and PKC plays a central role in MCMV pathogenesis in vivo.


2021 ◽  
Author(s):  
Shucai Xie ◽  
Xili Jiang ◽  
Desislava Met Doycheva ◽  
Hui Shi ◽  
Peng Jin ◽  
...  

Abstract Background: Hypoxic-ischemic encephalopathy (HIE) is a severe anoxic brain injury that leads to premature mortality or long-term disabilities in infants. Neuroinflammation is a vital contributor to the pathogenic cascade post HIE and a mediator to secondary neuronal death. As a plasma membrane G-protein coupled receptor, GPR39, exhibits anti-inflammatory activity in several diseases. This study aimed to explore the neuroprotective function of GPR39 through inhibition of inflammation post hypoxic-ischemic (HI) injury and to elaborate the contribution of sirtuin 1(SIRT1)/ peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α)/ nuclear factor, erythroid 2 like 2(Nrf2) in G protein-coupled receptor 39 (GPR39)-mediated protection.Methods: A total of 206 10-day old Sprague Dawley rat pups were subjected to HIE or sham surgery. TC-G 1008 was administered intranasally at 1h, 25h, 49h, and 73h post HIE induction. SIRT1 inhibitor EX527, GPR39 CRISPR, and PGC-1α CRISPR were administered to elucidate the underlying mechanisms. Brain infarct area, short-term and long-term neurobehavioral tests, Nissl staining, western blot, and immunofluorescence staining were performed post HIE.Results: The expression of GPR39 and pathway-related proteins, SIRT1、PGC-1α and Nrf2 were increased in a time-dependent manner, peaking at 24 h or 48h post HIE. Intranasal administration of TC-G 1008 reduced the percent infarcted area and improved short-term and long-term neurological deficits. Moreover, TC-G 1008 treatment significantly increased the expression of SIRT1, PGC-1α, Nrf2, IL-6, IL-1β, and TNF-α. GPR39 CRISPR EX527 and PGC-1α CRISPR abolished GPR39’s neuroprotective effects post HIE.Conclusions:TC-G 1008 attenuated neuroinflammation in part via the SIRT1/PGC-1α/Nrf2 pathway in a neonatal rat model of HIE. TC-G 1008 may be a novel therapeutic target for treatment post neonatal HIE injury.


2004 ◽  
Vol 50 (12) ◽  
pp. 1081-1085 ◽  
Author(s):  
Quentin L Sciascia ◽  
Patrick A Sullivan ◽  
Peter C Farley

Filamentous growth of Candida albicans occurs in response to a variety of environmental signals. The C. albicans gene orf19.1944 and its allele orf19.9499 are identical and are predicted to encode an 823-residue, 7-transmembrane-domain protein that has all the expected features of a G-protein-coupled receptor. The protein is 20.9% identical to the Saccharomyces cerevisiae Gpr1p receptor that signals both glucose availability and nitrogen limitation. Deletion of both copies of the gene in C. albicans abolished filamentation by colonies embedded in rich media (YPS, YPGal, and YPGlu), whereas mutants carrying a single copy of the gene were indistinguishable from the parental strain under these conditions. On medium containing low concentrations of ammonia (SLAD and SLAM media), surface colonies of both the homozygous deletion mutants and the mutants carrying a single copy of the gene were defective in filamentation. Serum-induced germ tube formation was unaffected by deletion of this gene, as was filamentation of the mutants growing on the surface of solid Spider medium at 37 °C or embedded in solid Spider medium at 25 °C. The protein encoded by orf19.1944 and orf19.9499 has a role in filamentation by both surface and embedded colonies, presumably as a sensor of environmental cues.Key words: Candida albicans, G-protein-coupled receptor, orf19.1944, embedded agar, filamentation.


2013 ◽  
Vol 12 (11) ◽  
pp. 1433-1438 ◽  
Author(s):  
Matthew T. Brewer ◽  
Prince N. Agbedanu ◽  
Mostafa Zamanian ◽  
Tim A. Day ◽  
Steve A. Carlson

ABSTRACT Entamoeba histolytica is the causative agent of amoebic dysentery, a worldwide protozoal disease that results in approximately 100,000 deaths annually. The virulence of E. histolytica may be due to interactions with the host bacterial flora, whereby trophozoites engulf colonic bacteria as a nutrient source. The engulfment process depends on trophozoite recognition of bacterial epitopes that activate phagocytosis pathways. E. histolytica GPCR-1 (EhGPCR-1) was previously recognized as a putative G-protein-coupled receptor (GPCR) used by Entamoeba histolytica during phagocytosis. In the present study, we attempted to characterize EhGPCR-1 by using heterologous GPCR expression in Saccharomyces cerevisiae . We discovered that bacterial lipopolysaccharide (LPS) is an activator of EhGPCR-1 and that LPS stimulates EhGPCR-1 in a concentration-dependent manner. Additionally, we demonstrated that Entamoeba histolytica prefers to engulf bacteria with intact LPS and that this engulfment process is sensitive to suramin, which prevents the interactions of GPCRs and G-proteins. Thus, EhGPCR-1 is an LPS-recognizing GPCR that is a potential drug target for treatment of amoebiasis, especially considering the well-established drug targeting to GPCRs.


1993 ◽  
Vol 264 (5) ◽  
pp. G840-G847 ◽  
Author(s):  
L. K. Gates ◽  
C. D. Ulrich ◽  
L. J. Miller

The cholecystokinin (CCK) receptor on the rat pancreatic acinar cell is a guanine nucleotide-binding protein (G protein)-coupled receptor, which was recently demonstrated to be phosphorylated in response to agonist stimulation (Klueppelberg et al., J. Biol. Chem. 266: 17744-17746, 1991). In this work, we establish that this receptor is phosphorylated in response to a variety of homologous and heterologous secretagogues and that these phosphorylation events represent action by more than one protein kinase. One subgroup of kinases includes one or more isotype of protein kinase C (PKC), and is capable of playing a role in homologous and heterologous desensitization. A second subgroup of kinases that acts on the CCK receptor was defined by its resistance to 10 microM staurosporine, which was shown to inhibit all PKC in these cells. The activity of the second group of kinases was observed only in response to occupation of the CCK receptor by high concentrations of native hormone, raising the possibility of a "receptor-specific kinase." Similar to the prototypical kinase, beta-adrenergic receptor kinase (beta-ARK), this activity was inhibited in permeabilized cells by heparin. Furthermore, like this enzyme activity, beta-ARK was shown to be resistant to staurosporine. Based on its action on a G protein-coupled receptor, its activation at high concentrations of native agonist, and its pattern of inhibition, we believe that the staurosporine-insensitive CCK receptor kinase activity represents either beta-ARK or a closely related member of the receptor-specific kinase enzyme family.


Development ◽  
2017 ◽  
Vol 145 (1) ◽  
pp. dev154054 ◽  
Author(s):  
Sun-hee Hwang ◽  
Kevin A. White ◽  
Bandarigoda N. Somatilaka ◽  
John M. Shelton ◽  
James A. Richardson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document