scholarly journals Draft Genome Sequences of Human Pathogenic Fungus Geomyces pannorum Sensu Lato and Bat White Nose Syndrome Pathogen Geomyces (Pseudogymnoascus) destructans

2013 ◽  
Vol 1 (6) ◽  
Author(s):  
M. C. Chibucos ◽  
J. Crabtree ◽  
S. Nagaraj ◽  
S. Chaturvedi ◽  
V. Chaturvedi
2018 ◽  
Vol 399 (12) ◽  
pp. 1375-1388 ◽  
Author(s):  
Chapman Beekman ◽  
Zhenze Jiang ◽  
Brian M. Suzuki ◽  
Jonathan M. Palmer ◽  
Daniel L. Lindner ◽  
...  

Abstract Pseudogymnoascus destructans is a pathogenic fungus responsible for White-nose Syndrome (WNS), a disease afflicting multiple species of North American bats. Pseudogymnoascus destructans infects susceptible bats during hibernation, invading dermal tissue and causing extensive tissue damage. In contrast, other Pseudogymnoascus species are non-pathogenic and cross-species comparisons may therefore reveal factors that contribute to virulence. In this study, we compared the secretome of P. destructans with that from several closely related Pseudogymnoascus species. A diverse set of hydrolytic enzymes were identified, including a putative serine peptidase, PdCP1, that was unique to the P. destructans secretome. A recombinant form of PdCP1 was purified and substrate preference determined using a multiplexed-substrate profiling method based on enzymatic degradation of a synthetic peptide library and analysis by mass spectrometry. Most peptide substrates were sequentially truncated from the carboxyl-terminus revealing that this enzyme is a bona fide carboxypeptidase. Peptides with arginine located close to the carboxyl-terminus were rapidly cleaved, and a fluorescent substrate containing arginine was therefore used to characterize PdCP1 activity and to screen a selection of peptidase inhibitors. Antipain and leupeptin were found to be the most potent inhibitors of PdCP1 activity.


mSphere ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
José F. Muñoz ◽  
Rhys A. Farrer ◽  
Christopher A. Desjardins ◽  
Juan E. Gallo ◽  
Sean Sykes ◽  
...  

ABSTRACT Characterization of genetic differences between lineages of the dimorphic human-pathogenic fungus Paracoccidioides can identify changes linked to important phenotypes and guide the development of new diagnostics and treatments. In this article, we compared genomes of 31 diverse isolates representing the major lineages of Paracoccidioides spp. and completed the first annotated genome sequences for the PS3 and PS4 lineages. We analyzed the population structure and characterized the genetic diversity among the lineages of Paracoccidioides, including a deep split of S1 into two lineages (S1a and S1b), and differentiated S1b, associated with most clinical cases, as the more highly recombining and diverse lineage. In addition, we found patterns of positive selection in surface proteins and secreted enzymes among the lineages, suggesting diversifying mechanisms of pathogenicity and adaptation across this species complex. These genetic differences suggest associations with the geographic range, pathogenicity, and ecological niches of Paracoccidioides lineages. The Paracoccidioides genus includes two species of thermally dimorphic fungi that cause paracoccidioidomycosis, a neglected health-threatening human systemic mycosis endemic to Latin America. To examine the genome evolution and the diversity of Paracoccidioides spp., we conducted whole-genome sequencing of 31 isolates representing the phylogenetic, geographic, and ecological breadth of the genus. These samples included clinical, environmental and laboratory reference strains of the S1, PS2, PS3, and PS4 lineages of P. brasiliensis and also isolates of Paracoccidioides lutzii species. We completed the first annotated genome assemblies for the PS3 and PS4 lineages and found that gene order was highly conserved across the major lineages, with only a few chromosomal rearrangements. Comparing whole-genome assemblies of the major lineages with single-nucleotide polymorphisms (SNPs) predicted from the remaining 26 isolates, we identified a deep split of the S1 lineage into two clades we named S1a and S1b. We found evidence for greater genetic exchange between the S1b lineage and all other lineages; this may reflect the broad geographic range of S1b, which is often sympatric with the remaining, largely geographically isolated lineages. In addition, we found evidence of positive selection for the GP43 and PGA1 antigen genes and genes coding for other secreted proteins and proteases and lineage-specific loss-of-function mutations in cell wall and protease genes; these together may contribute to virulence and host immune response variation among natural isolates of Paracoccidioides spp. These insights into the recent evolutionary events highlight important differences between the lineages that could impact the distribution, pathogenicity, and ecology of Paracoccidioides. IMPORTANCE Characterization of genetic differences between lineages of the dimorphic human-pathogenic fungus Paracoccidioides can identify changes linked to important phenotypes and guide the development of new diagnostics and treatments. In this article, we compared genomes of 31 diverse isolates representing the major lineages of Paracoccidioides spp. and completed the first annotated genome sequences for the PS3 and PS4 lineages. We analyzed the population structure and characterized the genetic diversity among the lineages of Paracoccidioides, including a deep split of S1 into two lineages (S1a and S1b), and differentiated S1b, associated with most clinical cases, as the more highly recombining and diverse lineage. In addition, we found patterns of positive selection in surface proteins and secreted enzymes among the lineages, suggesting diversifying mechanisms of pathogenicity and adaptation across this species complex. These genetic differences suggest associations with the geographic range, pathogenicity, and ecological niches of Paracoccidioides lineages.


2019 ◽  
Vol 15 ◽  
pp. 117693431983130
Author(s):  
Yu-Na Kang ◽  
Kum-Kang So ◽  
Do-Wan Kim ◽  
Dae-Hyuk Kim ◽  
Tae-Ho Lee

Cladosporium phlei, which causes purple eyespot disease, has been focused on as a source of phleichrome from the perylenequinone group of pigments. Although this agent is important in photodynamic therapy, there are no genome sequences for the species. Here, we sequenced the genome of C. phlei and reported the draft sequence. The total length of the draft genome was approximately 31.8 Mb, and 9571 genes were predicted. Phylogenetic analysis showed that Cladosporium sphaerospermum, Rachicladosporium sp., and Rachicladosporium antarcticum were closely related, and this result corresponded to the taxonomic data. In addition to the draft genome sequence, we report four candidates of new polyketide synthase (PKS) genes, involved in the production of perylenequinone-group pigments.


2015 ◽  
Vol 3 (6) ◽  
Author(s):  
Cecilia H. Deng ◽  
Reiny W. A. Scheper ◽  
Amali H. Thrimawithana ◽  
Joanna K. Bowen

Neonectria ditissima is the causal agent of apple canker. Here, we present the draft genome sequences of two isolates of N. ditissima that differ in virulence. Comparative genomics will enable pathogenicity determinants to be identified in this plant-pathogenic fungus.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tereza Veselská ◽  
Karolína Homutová ◽  
Paula García Fraile ◽  
Alena Kubátová ◽  
Natália Martínková ◽  
...  

Abstract The genus Pseudogymnoascus encompasses soil psychrophilic fungi living also in caves. Some are opportunistic pathogens; nevertheless, they do not cause outbreaks. Pseudogymnoascus destructans is the causative agent of the white-nose syndrome, which is decimating cave-hibernating bats. We used comparative eco-physiology to contrast the enzymatic potential and conidial resilience of P. destructans with that of phylogenetically diverse cave fungi, including Pseudogymnoascus spp., dermatophytes and outdoor saprotrophs. Enzymatic potential was assessed by Biolog MicroArray and by growth on labelled substrates and conidial viability was detected by flow cytometry. Pseudogymnoascusdestructans was specific by extensive losses of metabolic variability and by ability of lipid degradation. We suppose that lipases are important enzymes allowing fungal hyphae to digest and invade the skin. Pseudogymnoascus destructans prefers nitrogenous substrates occurring in bat skin and lipids. Additionally, P. destructans alkalizes growth medium, which points to another possible virulence mechanism. Temperature above 30 °C substantially decreases conidial viability of cave fungi including P. destructans. Nevertheless, survival of P. destructans conidia prolongs by the temperature regime simulating beginning of the flight season, what suggests that conidia could persist on the body surface of bats and contribute to disease spreading during bats active season.


2018 ◽  
Vol 7 (6) ◽  
Author(s):  
Rocio Medina ◽  
Mario Emilio Ernesto Franco ◽  
Gustavo Lucentini ◽  
Mario Carlos Nazareno Saparrat ◽  
Pedro Alberto Balatti

Stemphylium lycopersici (Pleosporales) is a pathogenic fungus found on a broad range of plant hosts. It is one of the causal agents of gray leaf spot disease in tomato that causes severe yield reductions and economic losses worldwide.


2017 ◽  
Vol 5 (37) ◽  
Author(s):  
Ludovic Duvaux ◽  
Jason Shiller ◽  
Patrick Vandeputte ◽  
Thomas Dugé de Bernonville ◽  
Christopher Thornton ◽  
...  

ABSTRACT The opportunistic fungal pathogen Scedosporium boydii is the most common Scedosporium species in French patients with cystic fibrosis. Here we present the first genome report for S. boydii, providing a resource which may enable the elucidation of the pathogenic mechanisms in this species.


2021 ◽  
Author(s):  
Andrew M. Kramer ◽  
Alex Mercier ◽  
Sean Maher ◽  
Yaw Kumi-Ansu ◽  
Sarah Bowden ◽  
...  

AbstractWhite-nose syndrome has caused massive mortality in multiple bat species and spread across much of North America, making it one of the most destructive wildlife diseases on record. This has also resulted in it being one of the most well-documented wildlife disease outbreaks, making it possible to look for changes in the pattern of spatial spread over time. We fit a series of spatial interaction models to the United States county-level observations of the pathogenic fungus, Pseudogymnoascus destructans, that causes white-nose syndrome. Models included the distance between caves, cave abundance, measures of winter length and winter onset, and species richness of all bats and hibernating bats only. We found that the best supported models included all of these factors, but that the particular structure and most informative covariates changed over the course of the outbreak, with winter length displacing winter onset as the most informative measure of winter conditions, and evidence for the effects total species richness and hibernation varying from year to year. We also found that weather had detectable effects on spread. While the effect sizes for cave abundance and species richness were relatively stable over the length of the outbreak, distance became less important as time went on. These findings indicate that although models produced early in the outbreak captured important and consistent aspects of the spatial spread of white-nose syndrome, there were also changes over time in the factors associated with spread, suggesting that forecasts may be improved by iterative model refinement.


2019 ◽  
Vol 8 (16) ◽  
Author(s):  
Aleksey A. Vatlin ◽  
Kirill V. Shur ◽  
Valery N. Danilenko ◽  
Dmitry A. Maslov

Here, we report 12 draft genome sequences of mutant Mycolicibacterium smegmatis strains resistant to imidazo[1,2-b][1,2,4,5]tetrazines, which are antituberculosis drug candidates. We have identified 7 different mutations in the MSMEG_1380 gene, which encodes the AcrR/TetR_N transcriptional repressor, which may activate efflux-mediated resistance.


Sign in / Sign up

Export Citation Format

Share Document