scholarly journals RNA Sequencing Reveals Distinct Immune Responses in the Chorioamniotic Membranes of Women with Preterm Labor and Microbial or Sterile Intra-amniotic Inflammation

2021 ◽  
Vol 89 (5) ◽  
Author(s):  
Kenichiro Motomura ◽  
Roberto Romero ◽  
Jose Galaz ◽  
Adi L. Tarca ◽  
Bogdan Done ◽  
...  

ABSTRACT Preterm labor precedes premature birth, the leading cause of neonatal morbidity and mortality worldwide. Preterm labor can occur in the context of either microbe-associated intra-amniotic inflammation (i.e., intra-amniotic infection) or intra-amniotic inflammation in the absence of detectable microorganisms (i.e., sterile intra-amniotic inflammation). Both intra-amniotic infection and sterile intra-amniotic inflammation trigger local immune responses that have deleterious effects on fetal life. Yet, the extent of such immune responses in the fetal tissues surrounding the amniotic cavity (i.e., the chorioamniotic membranes) is poorly understood. By using RNA sequencing (RNA seq) as a discovery approach, we found that there were significant transcriptomic differences involving host response to pathogens in the chorioamniotic membranes of women with intra-amniotic infection compared to those from women without inflammation. In addition, the sterile or microbial nature of intra-amniotic inflammation was associated with distinct transcriptomic profiles in the chorioamniotic membranes. Moreover, the immune response in the chorioamniotic membranes of women with sterile intra-amniotic inflammation was milder in nature than that induced by microbes and involved the upregulation of alarmins and inflammasome-related molecules. Lastly, the presence of maternal and fetal inflammatory responses in the placenta was associated with the upregulation of immune processes in the chorioamniotic membranes. Collectively, these findings provide insight into the immune responses against microbes or alarmins that take place in the fetal tissues surrounding the amniotic cavity, shedding light on the immunobiology of preterm labor and birth.

Author(s):  
Kenichiro Motomura ◽  
Roberto Romero ◽  
Olesya Plazyo ◽  
Valeria Garcia-Flores ◽  
Meyer Gershater ◽  
...  

Abstract Sterile inflammation is triggered by danger signals or alarmins released upon cellular stress or necrosis. Sterile inflammation occurring in the amniotic cavity (i.e. sterile intra-amniotic inflammation) is frequently observed in women with spontaneous preterm labor resulting in preterm birth, the leading cause of neonatal morbidity and mortality worldwide, and is associated with increased amniotic fluid concentrations of alarmins. However, the mechanisms whereby alarmins induce sterile intra-amniotic inflammation are still under investigation. Herein, we investigated the mechanisms whereby the alarmin S100A12 induces inflammation of the human chorioamniotic membranes in vitro and used a mouse model to establish a causal link between this alarmin and adverse perinatal outcomes. We report that S100A12 initiates sterile inflammation in the chorioamniotic membranes by upregulating the expression of inflammatory mediators such as pro-inflammatory cytokines and pattern recognition receptors. Importantly, S100A12 induced the priming and activation of inflammasomes, resulting in the activation of caspase-1 and the subsequent release of mature IL-1β by the chorioamniotic membranes. This alarmin also caused the activation of the chorioamniotic membranes by promoting MMP-2 activity and collagen degradation. Lastly, the ultrasound-guided intra-amniotic injection of S100A12 at specific concentrations observed in the majority of women with sterile intra-amniotic inflammation induced preterm birth (rates: 17% at 200 ng/sac; 25% at 300 ng/sac; 25% at 400 ng/sac) and neonatal mortality (rates: 22% at 200 ng/sac; 44% at 300 ng/sac; 31% at 400 ng/sac), demonstrating a causal link between this alarmin and adverse perinatal outcomes. Collectively, our findings shed light on the inflammatory responses driven by alarmins in the chorioamniotic membranes, providing insight into the immune mechanisms leading to preterm birth in women with sterile intra-amniotic inflammation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eunyoung Emily Lee ◽  
Kyoung-Ho Song ◽  
Woochang Hwang ◽  
Sin Young Ham ◽  
Hyeonju Jeong ◽  
...  

AbstractThe objective of the study was to identify distinct patterns in inflammatory immune responses of COVID-19 patients and to investigate their association with clinical course and outcome. Data from hospitalized COVID-19 patients were retrieved from electronic medical record. Supervised k-means clustering of serial C-reactive protein levels (CRP), absolute neutrophil counts (ANC), and absolute lymphocyte counts (ALC) was used to assign immune responses to one of three groups. Then, relationships between patterns of inflammatory responses and clinical course and outcome of COVID-19 were assessed in a discovery and validation cohort. Unbiased clustering analysis grouped 105 patients of a discovery cohort into three distinct clusters. Cluster 1 (hyper-inflammatory immune response) was characterized by high CRP levels, high ANC, and low ALC, whereas Cluster 3 (hypo-inflammatory immune response) was associated with low CRP levels and normal ANC and ALC. Cluster 2 showed an intermediate pattern. All patients in Cluster 1 required oxygen support whilst 61% patients in Cluster 2 and no patient in Cluster 3 required supplementary oxygen. Two (13.3%) patients in Cluster 1 died, whereas no patient in Clusters 2 and 3 died. The results were confirmed in an independent validation cohort of 116 patients. We identified three different patterns of inflammatory immune response to COVID-19. Hyper-inflammatory immune responses with elevated CRP, neutrophilia, and lymphopenia are associated with a severe disease and a worse outcome. Therefore, targeting the hyper-inflammatory response might improve the clinical outcome of COVID-19.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 933
Author(s):  
Amin S. Asfor ◽  
Salik Nazki ◽  
Vishwanatha R.A.P. Reddy ◽  
Elle Campbell ◽  
Katherine L. Dulwich ◽  
...  

In order to better understand differences in the outcome of infectious bursal disease virus (IBDV) infection, we inoculated a very virulent (vv) strain into White Leghorn chickens of inbred line W that was previously reported to experience over 24% flock mortality, and three inbred lines (15I, C.B4 and 0) that were previously reported to display no mortality. Within each experimental group, some individuals experienced more severe disease than others but line 15I birds experienced milder disease based on average clinical scores, percentage of birds with gross pathology, average bursal lesion scores and average peak bursal virus titre. RNA-Seq analysis revealed that more severe disease in line W was associated with significant up-regulation of pathways involved in inflammation, cytoskeletal regulation by Rho GTPases, nicotinic acetylcholine receptor signaling, and Wnt signaling in the bursa compared to line 15I. Primary bursal cell populations isolated from uninfected line W birds contained a significantly greater percentage of KUL01+ macrophages than cells isolated from line 15I birds (p < 0.01) and, when stimulated ex vivo with LPS, showed more rapid up-regulation of pro-inflammatory gene expression than those from line 15I birds. We hypothesize that a more rapid induction of pro-inflammatory cytokine responses in bursal cells following IBDV infection leads to more severe disease in line W birds than in line 15I.


Author(s):  
Ping Huang ◽  
Jieying Zhu ◽  
Yu Liu ◽  
Guihuan Liu ◽  
Ran Zhang ◽  
...  

Abstract Background Four transcription factors, Oct4, Sox2, Klf4, and c-Myc (the Yamanka factors), can reprogram somatic cells to induced pluripotent stem cells (iPSCs). Many studies have provided a number of alternative combinations to the non-Yamanaka factors. However, it is clear that many additional transcription factors that can generate iPSCs remain to be discovered. Methods The chromatin accessibility and transcriptional level of human embryonic stem cells and human urine cells were compared by Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing (RNA-seq) to identify potential reprogramming factors. Selected transcription factors were employed to reprogram urine cells, and the reprogramming efficiency was measured. Urine-derived iPSCs were detected for pluripotency by Immunofluorescence, quantitative polymerase chain reaction, RNA sequencing and teratoma formation test. Finally, we assessed the differentiation potential of the new iPSCs to cardiomyocytes in vitro. Results ATAC-seq and RNA-seq datasets predicted TEAD2, TEAD4 and ZIC3 as potential factors involved in urine cell reprogramming. Transfection of TEAD2, TEAD4 and ZIC3 (in the presence of Yamanaka factors) significantly improved the reprogramming efficiency of urine cells. We confirmed that the newly generated iPSCs possessed pluripotency characteristics similar to normal H1 embryonic stem cells. We also confirmed that the new iPSCs could differentiate to functional cardiomyocytes. Conclusions In conclusion, TEAD2, TEAD4 and ZIC3 can increase the efficiency of reprogramming human urine cells into iPSCs, and provides a new stem cell sources for the clinical application and modeling of cardiovascular disease. Graphical abstract


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Milda Mickutė ◽  
Kotryna Kvederavičiūtė ◽  
Aleksandr Osipenko ◽  
Raminta Mineikaitė ◽  
Saulius Klimašauskas ◽  
...  

Abstract Background Targeted installation of designer chemical moieties on biopolymers provides an orthogonal means for their visualisation, manipulation and sequence analysis. Although high-throughput RNA sequencing is a widely used method for transcriptome analysis, certain steps, such as 3′ adapter ligation in strand-specific RNA sequencing, remain challenging due to structure- and sequence-related biases introduced by RNA ligases, leading to misrepresentation of particular RNA species. Here, we remedy this limitation by adapting two RNA 2′-O-methyltransferases from the Hen1 family for orthogonal chemo-enzymatic click tethering of a 3′ sequencing adapter that supports cDNA production by reverse transcription of the tagged RNA. Results We showed that the ssRNA-specific DmHen1 and dsRNA-specific AtHEN1 can be used to efficiently append an oligonucleotide adapter to the 3′ end of target RNA for sequencing library preparation. Using this new chemo-enzymatic approach, we identified miRNAs and prokaryotic small non-coding sRNAs in probiotic Lactobacillus casei BL23. We found that compared to a reference conventional RNA library preparation, methyltransferase-Directed Orthogonal Tagging and RNA sequencing, mDOT-seq, avoids misdetection of unspecific highly-structured RNA species, thus providing better accuracy in identifying the groups of transcripts analysed. Our results suggest that mDOT-seq has the potential to advance analysis of eukaryotic and prokaryotic ssRNAs. Conclusions Our findings provide a valuable resource for studies of the RNA-centred regulatory networks in Lactobacilli and pave the way to developing novel transcriptome and epitranscriptome profiling approaches in vitro and inside living cells. As RNA methyltransferases share the structure of the AdoMet-binding domain and several specific cofactor binding features, the basic principles of our approach could be easily translated to other AdoMet-dependent enzymes for the development of modification-specific RNA-seq techniques.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Huahe Zhu ◽  
Shun Wang ◽  
Cong Shan ◽  
Xiaoqian Li ◽  
Bo Tan ◽  
...  

AbstractXuan-bai-cheng-qi decoction (XCD), a traditional Chinese medicine (TCM) prescription, has been widely used to treat a variety of respiratory diseases in China, especially to seriously infectious diseases such as acute lung injury (ALI). Due to the complexity of the chemical constituent, however, the underlying pharmacological mechanism of action of XCD is still unclear. To explore its protective mechanism on ALI, firstly, a network pharmacology experiment was conducted to construct a component-target network of XCD, which identified 46 active components and 280 predicted target genes. Then, RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) between ALI model rats treated with and without XCD and 753 DEGs were found. By overlapping the target genes identified using network pharmacology and DEGs using RNA-seq, and subsequent protein–protein interaction (PPI) network analysis, 6 kernel targets such as vascular epidermal growth factor (VEGF), mammalian target of rapamycin (mTOR), AKT1, hypoxia-inducible factor-1α (HIF-1α), and phosphoinositide 3-kinase (PI3K) and gene of phosphate and tension homology deleted on chromsome ten (PTEN) were screened out to be closely relevant to ALI treatment. Verification experiments in the LPS-induced ALI model rats showed that XCD could alleviate lung tissue pathological injury through attenuating proinflammatory cytokines release such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. Meanwhile, both the mRNA and protein expression levels of PI3K, mTOR, HIF-1α, and VEGF in the lung tissues were down-regulated with XCD treatment. Therefore, the regulations of XCD on PI3K/mTOR/HIF-1α/VEGF signaling pathway was probably a crucial mechanism involved in the protective mechanism of XCD on ALI treatment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryan Lusk ◽  
Evan Stene ◽  
Farnoush Banaei-Kashani ◽  
Boris Tabakoff ◽  
Katerina Kechris ◽  
...  

AbstractAnnotation of polyadenylation sites from short-read RNA sequencing alone is a challenging computational task. Other algorithms rooted in DNA sequence predict potential polyadenylation sites; however, in vivo expression of a particular site varies based on a myriad of conditions. Here, we introduce aptardi (alternative polyadenylation transcriptome analysis from RNA-Seq data and DNA sequence information), which leverages both DNA sequence and RNA sequencing in a machine learning paradigm to predict expressed polyadenylation sites. Specifically, as input aptardi takes DNA nucleotide sequence, genome-aligned RNA-Seq data, and an initial transcriptome. The program evaluates these initial transcripts to identify expressed polyadenylation sites in the biological sample and refines transcript 3′-ends accordingly. The average precision of the aptardi model is twice that of a standard transcriptome assembler. In particular, the recall of the aptardi model (the proportion of true polyadenylation sites detected by the algorithm) is improved by over three-fold. Also, the model—trained using the Human Brain Reference RNA commercial standard—performs well when applied to RNA-sequencing samples from different tissues and different mammalian species. Finally, aptardi’s input is simple to compile and its output is easily amenable to downstream analyses such as quantitation and differential expression.


Sign in / Sign up

Export Citation Format

Share Document