scholarly journals Major Histocompatibility Complex Class II-Restricted, CD4+ T Cell-Dependent and -Independent Mechanisms Are Required for Vaccine-Induced Protective Immunity against Coxiella burnetii

2019 ◽  
Vol 88 (3) ◽  
Author(s):  
Lindsey Ledbetter ◽  
Rama Cherla ◽  
Catherine Chambers ◽  
Yan Zhang ◽  
William J. Mitchell ◽  
...  

ABSTRACT To understand the role of major histocompatibility complex class I (MHC-I) and MHC-II in vaccine-mediated protection against Coxiella burnetii, we evaluated the protective efficacy of a formalin-inactivated C. burnetii Nine Mile phase I vaccine (PIV) in β2-microglobulin-deficient (B2m KO) and MHC-II-deficient (MHC-II KO) mice. Vaccination reduced disease severity in wild-type (WT) and B2m KO mice but failed to reduce bacterial burden in MHC-II KO mice. This suggests that the MHC-II antigen presentation pathway is required for PIV-mediated protection against C. burnetii infection. MHC-I and MHC-II affect antibody isotype switching, since both PIV-vaccinated B2m KO and MHC-II KO mice produced less Coxiella-specific IgG than PIV-vaccinated WT mice. Interestingly, MHC-II and CD4 deficiencies were not equivalent in terms of splenomegaly and bacterial clearance. This demonstrates a partial role for CD4+ T cells while revealing MHC-II-restricted, CD4-independent mechanisms. Adoptive transfer of CD4+ T cells from PIV-vaccinated WT mice to naive CD4-deficient (CD4 KO) mice demonstrated that antigen-experienced CD4+ T cells are sufficient to generate protection. Conversely, transfer of naive CD4+ T cells to PIV-vaccinated CD4 KO mice exacerbates disease. Using Tbet-deficient (Tbet KO) mice, we showed a partial role for Th1 subset CD4+ T cells in vaccine protection. Furthermore, Th1-independent roles for Tbet were suggested by significant differences in disease between PIV-vaccinated Tbet KO and CD4 KO mice. Interferon gamma was shown to contribute to the host inflammatory response but not bacterial clearance. Collectively, these findings suggest that vaccine-induced protective immunity against a murine model of experimental Q fever requires MHC-II-restricted, CD4+ T cell-dependent and -independent mechanisms that can be exploited for a new-generation human Q fever vaccine.

Blood ◽  
1998 ◽  
Vol 91 (10) ◽  
pp. 3566-3573 ◽  
Author(s):  
Søren Skov ◽  
Mette Nielsen ◽  
Søren Bregenholt ◽  
Niels Ødum ◽  
Mogens H. Claesson

Abstract Activation of Janus tyrosine kinases (Jak) and Signal transducers and activators of transcription (Stat) after ligation of major histocompatibility complex class I (MHC-I) was explored in Jurkat T cells. Cross-linking of MHC-I mediated tyrosine phosphorylation of Tyk2, but not Jak1, Jak2, and Jak3. In addition, the transcription factor Stat-3 was tyrosine phosphorylated in the cytoplasma and subsequently translocated to the cell nucleus. Data obtained by electrophoretic mobility shift assay suggested that the activated Stat-3 protein associates with the human serum-inducible element (hSIE) DNA-probe derived from the interferon-γ activated site (GAS) in the c-fos promoter, a common DNA sequence for Stat protein binding. An association between hSIE and Stat-3 after MHC-I ligation was directly demonstrated by precipitating Stat-3 from nuclear extracts with biotinylated hSIE probe and avidin-coupled agarose. To investigate the function of the activated Stat-3, Jurkat T cells were transiently transfected with a Stat-3 isoform lacking the transactivating domain. This dominant-negative acting Stat-3 isoform significantly inhibited apoptosis induced by ligation of MHC-I. In conclusion, our data suggest the involvement of the Jak/Stat signal pathway in MHC-I–induced signal transduction in T cells.


2010 ◽  
Vol 78 (12) ◽  
pp. 5116-5125 ◽  
Author(s):  
Lakshmi Ramachandra ◽  
Yan Qu ◽  
Ying Wang ◽  
Colleen J. Lewis ◽  
Brian A. Cobb ◽  
...  

ABSTRACT Major histocompatibility complex class II (MHC-II) molecules are released by murine macrophages upon lipopolysaccharide (LPS) stimulation and ATP signaling through the P2X7 receptor. These studies show that infection of macrophages with Mycobacterium tuberculosis or M. bovis strain BCG enhances MHC-II release in synergy with ATP. Shed MHC-II was contained in two distinct organelles, exosomes and plasma membrane-derived microvesicles, which were both able to present exogenous antigenic peptide to T hybridoma cells. Furthermore, microvesicles from mycobacterium-infected macrophages were able to directly present M. tuberculosis antigen (Ag) 85B(241-256)-I-Ab complexes that were generated by the processing of M. tuberculosis Ag 85B in infected cells to both M. tuberculosis-specific T hybridoma cells and naïve P25 M. tuberculosis T-cell receptor (TCR)-transgenic T cells. In the presence of prefixed macrophages, exosomes from mycobacterium-infected macrophages provided weak stimulation to M. tuberculosis-specific T hybridoma cells but not naïve P25 T cells. Thus, infection with M. tuberculosis primes macrophages for the increased release of exosomes and microvesicles bearing M. tuberculosis peptide-MHC-II complexes that may generate antimicrobial T-cell responses.


2007 ◽  
Vol 75 (11) ◽  
pp. 5200-5209 ◽  
Author(s):  
Florence Dzierszinski ◽  
Marion Pepper ◽  
Jason S. Stumhofer ◽  
David F. LaRosa ◽  
Emma H. Wilson ◽  
...  

ABSTRACT Challenge with the intracellular protozoan parasite Toxoplasma gondii induces a potent CD8+ T-cell response that is required for resistance to infection, but many questions remain about the factors that regulate the presentation of major histocompatibility complex class I (MHC-I)-restricted parasite antigens and about the role of professional and nonprofessional accessory cells. In order to address these issues, transgenic parasites expressing ovalbumin (OVA), reagents that track OVA/MHC-I presentation, and OVA-specific CD8+ T cells were exploited to compare the abilities of different infected cell types to stimulate CD8+ T cells and to define the factors that contribute to antigen processing. These studies reveal that a variety of infected cell types, including hematopoietic and nonhematopoietic cells, are capable of activating an OVA-specific CD8+ T-cell hybridoma, and that this phenomenon is dependent on the transporter associated with antigen processing and requires live T. gondii. Several experimental approaches indicate that T-cell activation is a consequence of direct presentation by infected host cells rather than cross-presentation. Surprisingly, nonprofessional antigen-presenting cells (APCs) were at least as efficient as dendritic cells at activating this MHC-I-restricted response. Studies to assess whether these cells are involved in initiation of the CD8+ T-cell response to T. gondii in vivo show that chimeric mice expressing MHC-I only in nonhematopoietic compartments are able to activate OVA-specific CD8+ T cells upon challenge. These findings associate nonprofessional APCs with the initial activation of CD8+ T cells during toxoplasmosis.


2007 ◽  
Vol 81 (21) ◽  
pp. 11703-11712 ◽  
Author(s):  
Jonah B. Sacha ◽  
Chungwon Chung ◽  
Jason Reed ◽  
Anna K. Jonas ◽  
Alexander T. Bean ◽  
...  

ABSTRACT Effective, vaccine-induced CD8+ T-cell responses should recognize infected cells early enough to prevent production of progeny virions. We have recently shown that Gag-specific CD8+ T cells recognize simian immunodeficiency virus-infected cells at 2 h postinfection, whereas Env-specific CD8+ T cells do not recognize infected cells until much later in infection. However, it remains unknown when other proteins present in the viral particle are presented to CD8+ T cells after infection. To address this issue, we explored CD8+ T-cell recognition of epitopes derived from two other relatively large virion proteins, Pol and Nef. Surprisingly, infected cells efficiently presented CD8+ T-cell epitopes from virion-derived Pol proteins within 2 h of infection. In contrast, Nef-specific CD8+ T cells did not recognize infected cells until 12 h postinfection. Additionally, we show that SIVmac239 Nef downregulated surface major histocompatibility complex class I (MHC-I) molecules beginning at 12 h postinfection, concomitant with presentation of Nef-derived CD8+ T-cell epitopes. Finally, Pol-specific CD8+ T cells eliminated infected cells as early as 6 h postinfection, well before MHC-I downregulation, suggesting a previously underappreciated antiviral role for Pol-specific CD8+ T cells.


2015 ◽  
Vol 83 (10) ◽  
pp. 3865-3880 ◽  
Author(s):  
Louis-Philippe Leroux ◽  
Manami Nishi ◽  
Sandy El-Hage ◽  
Barbara A. Fox ◽  
David J. Bzik ◽  
...  

Toxoplasma gondiiis an obligate intracellular protozoan parasite. This apicomplexan is the causative agent of toxoplasmosis, a leading cause of central nervous system disease in AIDS. It has long been known thatT. gondiiinterferes with major histocompatibility complex class II (MHC-II) antigen presentation to attenuate CD4+T cell responses and establish persisting infections. Transcriptional downregulation of MHC-II genes byT. gondiiwas previously established, but the precise mechanisms inhibiting MHC-II function are currently unknown. Here, we show that, in addition to transcriptional regulation of MHC-II, the parasite modulates the expression of key components of the MHC-II antigen presentation pathway, namely, the MHC-II-associated invariant chain (Ii or CD74) and the peptide editor H2-DM, in professional antigen-presenting cells (pAPCs). Genetic deletion of CD74 restored the ability of infected dendritic cells to present a parasite antigen in the context of MHC-IIin vitro. CD74 mRNA and protein levels were, surprisingly, elevated in infected cells, whereas MHC-II and H2-DM expression was inhibited. CD74 accumulated mainly in the endoplasmic reticulum (ER), and this phenotype required live parasites, but not active replication. Finally, we compared the impacts of genetic deletion of CD74 and H2-DM genes on parasite dissemination toward lymphoid organs in mice, as well as activation of CD4+T cells and interferon gamma (IFN-γ) levels during acute infection. Cyst burdens and survival during the chronic phase of infection were also evaluated in wild-type and knockout mice. These results highlight the fact that the infection is influenced by multiple levels of parasite manipulation of the MHC-II antigen presentation pathway.


2013 ◽  
Vol 82 (2) ◽  
pp. 626-639 ◽  
Author(s):  
Mariana C. Ferrero ◽  
M. Soledad Hielpos ◽  
Natalia B. Carvalho ◽  
Paula Barrionuevo ◽  
Patricia P. Corsetti ◽  
...  

ABSTRACTAlveolar macrophages (AM) seem to constitute the main cellular target of inhaled brucellae. Here, we show thatBrucella abortusinvades and replicates in murine AM without inducing cytotoxicity.B. abortusinfection induced a statistically significant increase of tumor necrosis factor alpha (TNF-α), CXCL1 or keratinocyte chemoattractant (KC), interleukin-1β (IL-1β), IL-6, and IL-12 in AM from C57BL/6 mice and BALB/c mice, but these responses were generally weaker and/or delayed compared to those elicited in peritoneal macrophages. Studies using knockout mice for TLR2, TLR4, and TLR9 revealed that TNF-α and KC responses were mediated by TLR2 recognition.Brucellainfection reduced in a multiplicity of infection-dependent manner the expression of major histocompatibility complex class II (MHC-II) molecules induced by gamma interferon (IFN-γ) in AM. The same phenomenon was induced by incubation with heat-killedB. abortus(HKBA) or the lipidated form of the 19-kDa outer membrane protein ofBrucella(L-Omp19), and it was shown to be mediated by TLR2 recognition. In contrast, no significant downregulation of MHC-II was induced by either unlipidated Omp19 orBrucellaLPS. In a functional assay, treatment of AM with either L-Omp19 or HKBA reduced the MHC-II-restricted presentation of OVA peptides to specific T cells. One week after intratracheal infection, viableB. abortuswas detected in AM from both wild-type and TLR2 KO mice, but CFU counts were higher in the latter. These results suggest thatB. abortussurvives in AM after inhalatory infection in spite of a certain degree of immune control exerted by the TLR2-mediated inflammatory response. Both the modest nature of the latter and the modulation of MHC-II expression by the bacterium may contribute to such survival.


2020 ◽  
Vol 94 (7) ◽  
Author(s):  
Lucas A. Tavares ◽  
Julianne V. de Carvalho ◽  
Cristina S. Costa ◽  
Roberta M. Silveira ◽  
Andreia N. de Carvalho ◽  
...  

ABSTRACT The HIV-1 accessory protein Nef downregulates the cell surface expression of major histocompatibility complex class I (MHC-I) molecules to facilitate virus spreading. The Nef-induced downregulation of MHC-I molecules such as HLA-A requires the clathrin adaptor protein 1 (AP-1) complex. The cooperative interaction of Nef, AP-1, and the cytosolic tail (CT) of HLA-A leads to a redirection of HLA-A targeting from the trans-Golgi network (TGN) to lysosomes for degradation. Although the γ-adaptin subunit of AP-1 has two distinct isoforms (γ1 and γ2), which may form two AP-1 complex variants, so far, only the importance of AP-1γ1 in MHC-I downregulation by Nef has been investigated. Here, we report that the AP-1γ2 isoform also participates in this process. We found that AP-1γ2 forms a complex with Nef and HLA-A2_CT and that this interaction depends on the Y320 residue in HLA-A2_CT and Nef expression. Moreover, Nef targets AP-1γ1 and AP-1γ2 to different compartments in T cells, and the depletion of either AP-1 variant impairs the Nef-mediated reduction of total endogenous HLA-A levels and rescues HLA-A levels on the cell surface. Finally, immunofluorescence and immunoelectron microscopy analyses reveal that the depletion of γ2 in T cells compromises both the Nef-mediated retention of HLA-A molecules in the TGN and targeting to multivesicular bodies/late endosomes. Altogether, these results show that in addition to AP-1γ1, Nef also requires the AP-1γ2 variant for efficient MHC-I downregulation. IMPORTANCE HIV-1 Nef mediates evasion of the host immune system by inhibiting MHC-I surface presentation of viral antigens. To achieve this goal, Nef modifies the intracellular trafficking of MHC-I molecules in several ways. Despite being the subject of intense study, the molecular details underlying these modifications are not yet fully understood. Adaptor protein 1 (AP-1) plays an essential role in the Nef-mediated downregulation of MHC-I molecules such as HLA-A in different cell types. However, AP-1 has two functionally distinct variants composed of either γ1 or γ2 subunit isoforms. Because previous studies on the role of AP-1 in MHC-I downregulation by Nef focused on AP-1γ1, an important open question is the participation of AP-1γ2 in this process. Here, we show that AP-1γ2 is also essential for Nef-mediated depletion of surface HLA-A molecules in T cells. Our results indicate that Nef hijacks AP-1γ2 to modify HLA-A intracellular transport, redirecting these proteins to lysosomes for degradation.


Blood ◽  
1998 ◽  
Vol 91 (10) ◽  
pp. 3566-3573
Author(s):  
Søren Skov ◽  
Mette Nielsen ◽  
Søren Bregenholt ◽  
Niels Ødum ◽  
Mogens H. Claesson

Activation of Janus tyrosine kinases (Jak) and Signal transducers and activators of transcription (Stat) after ligation of major histocompatibility complex class I (MHC-I) was explored in Jurkat T cells. Cross-linking of MHC-I mediated tyrosine phosphorylation of Tyk2, but not Jak1, Jak2, and Jak3. In addition, the transcription factor Stat-3 was tyrosine phosphorylated in the cytoplasma and subsequently translocated to the cell nucleus. Data obtained by electrophoretic mobility shift assay suggested that the activated Stat-3 protein associates with the human serum-inducible element (hSIE) DNA-probe derived from the interferon-γ activated site (GAS) in the c-fos promoter, a common DNA sequence for Stat protein binding. An association between hSIE and Stat-3 after MHC-I ligation was directly demonstrated by precipitating Stat-3 from nuclear extracts with biotinylated hSIE probe and avidin-coupled agarose. To investigate the function of the activated Stat-3, Jurkat T cells were transiently transfected with a Stat-3 isoform lacking the transactivating domain. This dominant-negative acting Stat-3 isoform significantly inhibited apoptosis induced by ligation of MHC-I. In conclusion, our data suggest the involvement of the Jak/Stat signal pathway in MHC-I–induced signal transduction in T cells.


2018 ◽  
Vol 86 (4) ◽  
Author(s):  
Laura Buttrum ◽  
Lindsey Ledbetter ◽  
Rama Cherla ◽  
Yan Zhang ◽  
William J. Mitchell ◽  
...  

ABSTRACTTo understand the role of class I major histocompatibility complex (MHC-I) and class II MHC (MHC-II) antigen presentation pathways in host defense againstCoxiella burnetiiinfection, we examined whether MHC-I or MHC-II deficiency in mice would significantly influence their susceptibility to virulentC. burnetiiNine Mile phase I (NMI) infection. The results indicate that NMI infection induced more severe disease in both MHC-I-deficient and MHC-II-deficient mice than in wild-type (WT) mice, while only MHC-I-deficient mice developed a severe persistent infection and were unable to control bacterial replication. These results suggest that both MHC-I-restricted CD8+T cells and MHC-II-restricted CD4+T cells contribute to host defense against primaryC. burnetiiinfection, while MHC-I-restricted CD8+T cells appear to play a more critical role in controlling bacterial replication. Additionally, although NMI infection induced more severe disease in TAP1-deficient mice than in their WT counterparts, TAP1 deficiency in mice did not significantly influence their ability to eliminateC. burnetii. This suggests thatC. burnetiiantigen presentation to CD8+T cells by the MHC-I classical pathway may depend only partially on TAP1. Furthermore, granzyme B deficiency in mice did not significantly alter their susceptibility toC. burnetiiinfection, but perforin-deficient mice were unable to control host inflammatory responses during primaryC. burnetiiinfection. These results suggest that perforin, but not granzyme B, is required forC. burnetiiantigen-specific cytotoxic CD8+T cells to control primaryC. burnetiiinfection.


Sign in / Sign up

Export Citation Format

Share Document