scholarly journals Burkholderia cenocepacia Requires the RpoN Sigma Factor for Biofilm Formation and Intracellular Trafficking within Macrophages

2008 ◽  
Vol 76 (3) ◽  
pp. 1059-1067 ◽  
Author(s):  
M. Soledad Saldías ◽  
Julie Lamothe ◽  
Robert Wu ◽  
Miguel A. Valvano

ABSTRACT Chronic respiratory infections by Burkholderia cenocepacia in cystic fibrosis patients are associated with increased morbidity and mortality, but virulence factors determining the persistence of the infection in the airways are not well characterized. Using a chronic pulmonary infection model, we previously identified an attenuated mutant with an insertion in a gene encoding an RpoN activator protein, suggesting that RpoN and/or components of the RpoN regulon play a role in B. cenocepacia virulence. In this study, we demonstrate that a functional rpoN gene is required for bacterial motility and biofilm formation in B. cenocepacia K56-2. Unlike other bacteria, RpoN does not control flagellar biosynthesis, as evidenced by the presence of flagella in the rpoN mutant. We also demonstrate that, in macrophages, the rpoN mutant is rapidly trafficked to lysosomes while intracellular wild-type B. cenocepacia localizes in bacterium-containing vacuoles that exhibit a pronounced delay in phagolysosomal fusion. Rapid trafficking to the lysosomes is also associated with the release of red fluorescent protein into the vacuolar lumen, indicating loss of bacterial cell envelope integrity. Although a role for RpoN in motility and biofilm formation has been previously established, this study is the first demonstration that the RpoN regulon in B. cenocepacia is involved in delaying phagolysosomal fusion, thereby prolonging bacterial intracellular survival within macrophages.

2007 ◽  
Vol 76 (1) ◽  
pp. 38-47 ◽  
Author(s):  
Steve P. Bernier ◽  
David T. Nguyen ◽  
Pamela A. Sokol

ABSTRACT Burkholderia cenocepacia strain K56-2 typically has rough colony morphology on agar medium; however, shiny colony variants (shv) can appear spontaneously. These shv all had a minimum of 50% reduction in biomass formation and were generally avirulent in an alfalfa seedling infection model. Three shv—K56-2 S15, K56-2 S76, and K56-2 S86—were analyzed for virulence in a chronic agar bead model of respiratory infection and, although all shv were able to establish chronic infection, they produced significantly less lung histopathology than the rough K56-2. Transmission electron microscopy revealed that an extracellular matrix surrounding bacterial cells was absent or reduced in the shv compared to the rough wild type. Transposon mutagenesis was performed on the rough wild-type strain and a mutant with an insertion upstream of ORF BCAS0225, coding for a putative LysR-type regulator, exhibited shiny colony morphology, reduced biofilm production, increased N-acyl homoserine lactone production, and avirulence in alfalfa. The rough parental colony morphotype, biofilm formation, and virulence in alfalfa were restored by providing BCAS0225 in trans in the BCAS0225::pGSVTp-luxCDABF mutant. Introduction of BCAS0225 restored the rough morphotype in several shv which were determined to have spontaneous mutations in this gene. In the present study, we show that the conversion from rough wild type to shv in B. cenocepacia correlates with reduced biofilm formation and virulence, and we determined that BCAS0225 is one gene involved in the regulation of these phenotypes.


Microbiology ◽  
2006 ◽  
Vol 152 (6) ◽  
pp. 1741-1750 ◽  
Author(s):  
Renjith Mathew ◽  
Raju Mukherjee ◽  
Radhakrishnan Balachandar ◽  
Dipankar Chatterji

The ω subunit, the smallest subunit of bacterial RNA polymerase, is known to be involved in maintaining the conformation of the β′ subunit and aiding its recruitment to the rest of the core enzyme assembly in Escherichia coli. It has recently been shown in Mycobacterium smegmatis, by creating a deletion mutation of the rpoZ gene encoding ω, that the physiological role of the ω subunit also includes providing physical protection to β′. Interestingly, the mutant had altered colony morphology. This paper demonstrates that the mutant mycobacterium has pleiotropic phenotypes including reduced sliding motility and defective biofilm formation. Analysis of the spatial arrangement of biofilms by electron microscopy suggests that the altered phenotype of the mutant arises from a deficiency in generation of extracellular matrix. Complementation of the mutant strain with a copy of the wild-type rpoZ gene integrated in the bacterial chromosome restored both sliding motility and biofilm formation to the wild-type state, unequivocally proving the role of ω in the characteristics observed for the mutant bacterium. Analysis of the cell wall composition demonstrated that the mutant bacterium had an identical glycopeptidolipid profile to the wild-type, but failed to synthesize the short-chain mycolic acids characteristic of biofilm growth in M. smegmatis.


2005 ◽  
Vol 73 (9) ◽  
pp. 5754-5761 ◽  
Author(s):  
Kwon-Sam Park ◽  
Michiko Arita ◽  
Tetsuya Iida ◽  
Takeshi Honda

ABSTRACT A histone-like nucleoid structure (H-NS) is a major component of the bacterial nucleoid and plays a crucial role in the global gene regulation of enteric bacteria. Here, we cloned and characterized the gene for the H-NS-like protein VpaH in Vibrio parahaemolyticus. vpaH encodes a protein of 134 amino acids that shows approximately 55%, 54%, and 41% identities with VicH in Vibrio cholerae, H-NS in V. parahaemolyticus, and H-NS in Escherichia coli, respectively. The vpaH gene was found in only trh-positive V. parahaemolyticus strains and not in Kanagawa-positive or in trh-negative environmental strains. Moreover, the G+C content of the vpaH gene was 38.6%, which is lower than the average G+C content of the whole genome of this bacterium (45.4%). These data suggest that vpaH was transmitted to trh-possessing V. parahaemolyticus strains by lateral transfer. The vpaH gene was located about 2.6 kb downstream of the trh gene, in the convergent direction of the trh transcription. An in-frame deletion mutant of vpaH lacked motility on semisolid motility assay plates. Western blot analysis and electron microscopy observations revealed that the mutant was deficient in lateral flagella biogenesis, whereas there was no defect in the expression of polar flagella. Additionally, the vpaH mutant showed a decreased adherence to HeLa cells and a decrease in biofilm formation compared with the wild-type strain. Introduction of the vpaH gene in the vpaH-negative strain increased the expression of lateral flagella compared with the wild-type strain. In conclusion, our findings suggest that VpaH affects lateral flagellum biogenesis in trh-positive V. parahaemolyticus strain TH3996.


2000 ◽  
Vol 68 (12) ◽  
pp. 6554-6560 ◽  
Author(s):  
P. A. Sokol ◽  
P. Darling ◽  
S. Lewenza ◽  
C. R. Corbett ◽  
C. D. Kooi

ABSTRACT Ornibactins are linear hydroxamate siderophores produced byBurkholderia cepacia with peptide structures similar to that of pyoverdines produced by the fluorescent pseudomonads. The gene encoding the outer membrane receptor (orbA) was identified, sequenced, and demonstrated to have significant homology with hydroxamate receptors produced by other organisms. The orbAprecursor was predicted to be a protein with a molecular mass of 81 kDa. An orbA mutant was constructed and demonstrated to be unable to take up 59Fe-ornibactins or to grow in medium supplemented with ornibactins. Outer membrane protein profiles from the parent strain, K56-2, revealed an iron-regulated outer membrane protein of 78 kDa that was not detectable in the K56orbA::tp mutant. When this mutant harbored a plasmid containing the orbA gene, the 78-kDa protein was present in the outer membrane protein profiles and the mutant was able to utilize ornibactin to acquire iron. The orbA mutant was less virulent in a chronic respiratory infection model than the parent strain, indicating that ornibactin uptake and utilization are important in the pathogenesis of B. cepacia respiratory infections.


2021 ◽  
Author(s):  
Mario López-Martín ◽  
Jean-Frédéric Dubern ◽  
Morgan R. Alexander ◽  
Paul Williams

Acinetobacter baumannii possesses a single divergent luxR/luxI-type quorum sensing (QS) locus named abaR/abaI. This locus also contains a third gene located between abaR and abaI which we term abaM that codes for an uncharacterized member of the RsaM protein family known to regulate N-acylhomoserine lactone (AHL) dependent QS in other β- and γ-proteobacteria. Here we show that disruption of abaM via a T26 insertion in A. baumannii strain AB5075 resulted in increased production of N-(3-hydroxydodecanoyl)-L-homoserine lactone (OHC12) and enhanced surface motility and biofilm formation. In contrast to the wild type and abaI::T26 mutant, the virulence of the abaM::T26 mutant was completely attenuated in a Galleria mellonella infection model. Transcriptomic analysis of the abaM::T26 mutant revealed that AbaM differentially regulates at least 76 genes including the csu pilus operon and the acinetin 505 lipopeptide biosynthetic operon, that are involved in surface adherence, biofilm formation and virulence. A comparison of the wild type, abaM::T26 and abaI::T26 transcriptomes, indicates that AbaM regulates ∼21% of the QS regulon including the csu operon. Moreover, the QS genes (abaI/abaR) were among the most upregulated in the abaM::T26 mutant. A. baumannii lux-based abaM reporter gene fusions revealed that abaM expression is positively regulated by QS but negatively auto-regulated. Overall, the data presented in this work demonstrates that AbaM plays a central role in regulating A. baumannii QS, virulence, surface motility and biofilm formation. Importance Acinetobacter baumanni is a multi-antibiotic resistant pathogen of global healthcare importance. Understanding Acinetobacter virulence gene regulation could aid the development of novel anti-infective strategies. In A. baumannii, the abaR and abaI genes that code for the receptor and synthase components of an N-acylhomoserine (AHL) lactone-dependent quorum sensing system (QS) are separated by abaM. Here we show that although mutation of abaM increased AHL production, surface motility and biofilm development, it resulted in the attenuation of virulence. AbaM was found to control both QS-dependent and QS-independent genes. The significance of this work lies in the identification of AbaM, an RsaM ortholog known to control virulence in plant pathogens, as a modulator of virulence in a human pathogen.


2008 ◽  
Vol 76 (3) ◽  
pp. 978-985 ◽  
Author(s):  
Paul Sumby ◽  
Shizhen Zhang ◽  
Adeline R. Whitney ◽  
Fabiana Falugi ◽  
Guido Grandi ◽  
...  

ABSTRACT Circumvention of the host innate immune response is critical for bacterial pathogens to infect and cause disease. Here we demonstrate that the group A Streptococcus (GAS; Streptococcus pyogenes) protease SpyCEP (S. pyogenes cell envelope protease) cleaves granulocyte chemotactic protein 2 (GCP-2) and growth-related oncogene alpha (GROα), two potent chemokines made abundantly in human tonsils. Cleavage of GCP-2 and GROα by SpyCEP abrogated their abilities to prime neutrophils for activation, detrimentally altering the innate immune response. SpyCEP expression is negatively regulated by the signal transduction system CovR/S. Purified recombinant CovR bound the spyCEP gene promoter region in vitro, indicating direct regulation. Immunoreactive SpyCEP protein was present in the culture supernatants of covR/S mutant GAS strains but not in supernatants from wild-type strains. However, wild-type GAS strains do express SpyCEP, where it is localized to the cell wall. Strain MGAS2221, an organism representative of the highly virulent and globally disseminated M1T1 GAS clone, differed significantly from its isogenic spyCEP mutant derivative strain in a mouse soft tissue infection model. Interestingly, and in contrast to previous studies, the isogenic mutant strain generated lesions of larger size than those formed following infection with the parent strain. The data indicate that SpyCEP contributes to GAS virulence in a strain- and disease-dependent manner.


2007 ◽  
Vol 190 (3) ◽  
pp. 894-904 ◽  
Author(s):  
Nadria D. Gordon ◽  
Geri L. Ottaviano ◽  
Sarah E. Connell ◽  
Gregory V. Tobkin ◽  
Crystal H. Son ◽  
...  

ABSTRACT The filamentous bacterium Streptomyces coelicolor forms an aerial mycelium as a prerequisite to sporulation, which occurs in the aerial hyphae. Uncontrolled activity of the extracytoplasmic function sigma factor σU blocks the process of aerial mycelium formation in this organism. Using a green fluorescent protein transcriptional reporter, we have demonstrated that sigU transcription is autoregulated. We have defined a σU-dependent promoter sequence and used this to identify 22 likely σU regulon members in the S. coelicolor genome. Since many of these genes encode probable secreted proteins, we characterized the extracellular proteome of a mutant with high σU activity caused by disruption of rsuA, the presumed cognate anti-sigma factor of σU. This mutant secreted a much greater quantity and diversity of proteins than the wild-type strain. Peptide mass fingerprinting was used to identify 79 proteins from the rsuA mutant culture supernatant. The most abundant species, SCO2217, SCO0930, and SCO2207, corresponded to secreted proteins or lipoproteins of unknown functions whose genes are in the proposed σU regulon. Several unique proteases were also detected in the extracellular proteome of the mutant, and the levels of the protease inhibitor SCO0762 were much reduced compared to those of the wild type. Consequently, extracellular protease activity was elevated about fourfold in the rsuA mutant. The functions of the proteins secreted as a result of σU activity may be important for combating cell envelope stress and modulating morphological differentiation in S. coelicolor.


2005 ◽  
Vol 73 (3) ◽  
pp. 1811-1819 ◽  
Author(s):  
Ursula Fluckiger ◽  
Martina Ulrich ◽  
Andrea Steinhuber ◽  
Gerd Döring ◽  
Dietrich Mack ◽  
...  

ABSTRACT Biofilm formation of Staphylococcus epidermidis and S. aureus is mediated by the polysaccharide intercellular adhesin (PIA) encoded by the ica operon. We used a device-related animal model to investigate biofilm formation, PIA expression (immunofluorescence), and ica transcription (quantitative transcript analysis) throughout the course of infection by using two prototypic S. aureus strains and one S. epidermidis strain as well as corresponding ica mutants. During infection, the ica mutants were growth attenuated when inoculated in competition with the corresponding wild-type strains but not when grown singly. A typical biofilm was observed at the late course of infection. Only in S. aureus RN6390, not in S. aureus Newman, were PIA and ica-specific transcripts detectable after anaerobic growth in vitro. However, both S. aureus strains were PIA positive in vivo by day 8 of infection. ica transcription preceded PIA expression and biofilm formation in vivo. In S. epidermidis, both PIA and ica expression levels were elevated compared to those in the S. aureus strains in vitro as well as in vivo and were detectable throughout the course of infection. In conclusion, in S. aureus, PIA expression is dependent on the genetic background of the strain as well as on strong inducing conditions, such as those dominating in vivo. In S. epidermidis, PIA expression is elevated and less vulnerable to environmental conditions.


2009 ◽  
Vol 78 (3) ◽  
pp. 1147-1162 ◽  
Author(s):  
Jonathan M. Burgos ◽  
Natalie D. King-Lyons ◽  
Terry D. Connell

ABSTRACT Iron (Fe) in soluble elemental form is found in the tissues and fluids of animals at concentrations insufficient for sustaining growth of bacteria. Consequently, to promote colonization and persistence, pathogenic bacteria evolved a myriad of scavenging mechanisms to acquire Fe from the host. Bordetella bronchiseptica, the etiologic agent of upper respiratory infections in a wide range of mammalian hosts, expresses a number of proteins for acquisition of Fe. Using proteomic and genomic approaches, three Fe-regulated genes were identified in the bordetellae: bfrH, a gene encoding a putative siderophore receptor; ecfI, a gene encoding a putative extracellular function (ECF) sigma factor; and ecfR, a gene encoding a putative EcfI modulator. All three genes are highly conserved in B. pertussis, B. parapertussis, and B. avium. Genetic analysis revealed that transcription of bfrH was coregulated by ecfI, ecfR, and fur1, one of two fur homologues carried by B. bronchiseptica. Overexpression of ecfI decoupled bfrH from Fe-dependent regulation. In contrast, expression of bfrH was significantly reduced in an ecfI deletion mutant. Deletion of ecfR, however, was correlated with a significant increase in expression of bfrH, due in part to a cis-acting nucleotide sequence within ecfR which likely reduces the frequency of readthrough transcription of bfrH from the Fe-dependent ecfIR promoter. Using a murine competition infection model, bfrH was shown to be required for optimal virulence of B. bronchiseptica. These experiments revealed ecfIR-bfrH as a locus encoding a new member of the growing family of Fe and ECF sigma factor-modulated regulons in the bordetellae.


2004 ◽  
Vol 186 (2) ◽  
pp. 270-277 ◽  
Author(s):  
Kate L. Farmer ◽  
Mark S. Thomas

ABSTRACT The opportunistic pathogen Burkholderia cenocepacia produces the yellow-green fluorescent siderophore, pyochelin. To isolate mutants which do not produce this siderophore, we mutagenized B. cenocepacia with the transposon mini-Tn5Tp. Two nonfluorescent mutants were identified which were unable to produce pyochelin. In both mutants, the transposon had integrated into a gene encoding an orthologue of CysW, a component of the sulfate/thiosulfate transporter. The cysW gene was located within a putative operon encoding other components of the transporter and a polypeptide exhibiting high homology to the LysR-type regulators CysB and Cbl. Sulfate uptake assays confirmed that both mutants were defective in sulfate transport. Growth in the presence of cysteine, but not methionine, restored the ability of the mutants to produce pyochelin, suggesting that the failure to produce the siderophore was the result of a depleted intracellular pool of cysteine, a biosynthetic precursor of pyochelin. Consistent with this, the wild-type strain did not produce pyochelin when grown in the presence of lower concentrations of sulfate that still supported efficient growth. We also showed that whereas methionine and certain organosulfonates can serve as sole sulfur sources for this bacterium, they do not facilitate pyochelin biosynthesis. These observations suggest that, under conditions of sulfur depletion, cysteine cannot be spared for production of pyochelin even under iron starvation conditions.


Sign in / Sign up

Export Citation Format

Share Document