scholarly journals Identification of Point Mutations in Clinical Staphylococcus aureus Strains That Produce Small-Colony Variants Auxotrophic for Menadione

2014 ◽  
Vol 82 (4) ◽  
pp. 1600-1605 ◽  
Author(s):  
Melissa A. Dean ◽  
Randall J. Olsen ◽  
S. Wesley Long ◽  
Adriana E. Rosato ◽  
James M. Musser

ABSTRACTStaphylococcus aureussmall-colony variants (SCVs) are implicated in chronic and relapsing infections that are difficult to diagnose and treat. Despite many years of study, the underlying molecular mechanisms and virulence effect of the small-colony phenotype remain incompletely understood. We sequenced the genomes of fiveS. aureusSCV strains recovered from human patients and discovered previously unidentified nonsynonymous point mutations in three genes encoding proteins in the menadione biosynthesis pathway. Analysis of genetic revertants and complementation with wild-type alleles confirmed that these mutations caused the SCV phenotype and decreased virulence for mice.

2015 ◽  
Vol 83 (5) ◽  
pp. 1830-1844 ◽  
Author(s):  
Kimberley L. Painter ◽  
Elizabeth Strange ◽  
Julian Parkhill ◽  
Kathleen B. Bamford ◽  
Darius Armstrong-James ◽  
...  

The development of chronic and recurrentStaphylococcus aureusinfections is associated with the emergence of slow-growing mutants known as small-colony variants (SCVs), which are highly tolerant of antibiotics and can survive inside host cells. However, the host and bacterial factors which underpin SCV emergence during infection are poorly understood. Here, we demonstrate that exposure ofS. aureusto sublethal concentrations of H2O2leads to a specific, dose-dependent increase in the population frequency of gentamicin-resistant SCVs. Time course analyses revealed that H2O2exposure caused bacteriostasis in wild-type cells during which time SCVs appeared spontaneously within theS. aureuspopulation. This occurred via a mutagenic DNA repair pathway that included DNA double-strand break repair proteins RexAB, recombinase A, and polymerase V. In addition to triggering SCV emergence by increasing the mutation rate, H2O2also selected for the SCV phenotype, leading to increased phenotypic stability and further enhancing the size of the SCV subpopulation by reducing the rate of SCV reversion to the wild type. Subsequent analyses revealed that SCVs were significantly more resistant to the toxic effects of H2O2than wild-type bacteria. With the exception of heme auxotrophs, gentamicin-resistant SCVs displayed greater catalase activity than wild-type bacteria, which contributed to their resistance to H2O2. Taken together, these data reveal a mechanism by whichS. aureusadapts to oxidative stress via the production of a subpopulation of H2O2-resistant SCVs with enhanced catalase production.


2013 ◽  
Vol 57 (11) ◽  
pp. 5658-5664 ◽  
Author(s):  
Soo-Jin Yang ◽  
Nagendra N. Mishra ◽  
Aileen Rubio ◽  
Arnold S. Bayer

ABSTRACTSingle nucleotide polymorphisms (SNPs) within themprFopen reading frame (ORF) have been commonly observed in daptomycin-resistant (DAPr)Staphylococcus aureusstrains. Such SNPs are usually associated with a gain-in-function phenotype, in terms of either increased synthesis or enhanced translocation (flipping) of lysyl-phosphatidylglycerol (L-PG). However, it is unclear if suchmprFSNPs are causal in DAPrstrains or are merely a biomarker for this phenotype. In this study, we used an isogenic set ofS. aureusstrains: (i) Newman, (ii) its isogenic ΔmprFmutant, and (iii) several intransplasmid complementation constructs, expressing either a wild-type or point-mutated form of themprFORF cloned from two isogenic DAP-susceptible (DAPs)-DAPrstrain pairs (616-701 and MRSA11/11-REF2145). Complementation of the ΔmprFstrain with singly point-mutatedmprFgenes (mprFS295LormprFT345A) revealed that (i) individual and distinct point mutations within themprFORF can recapitulate phenotypes observed in donor strains (i.e., changes in DAP MICs, positive surface charge, and cell membrane phospholipid profiles) and (ii) these gain-in-function SNPs (i.e., enhanced L-PG synthesis) likely promote reduced DAP binding toS. aureusby a charge repulsion mechanism. Thus, for these two DAPrstrains, the definedmprFSNPs appear to be causally related to this phenotype.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Andre Kriegeskorte ◽  
Desiree Block ◽  
Mike Drescher ◽  
Nadine Windmüller ◽  
Alexander Mellmann ◽  
...  

ABSTRACTStaphylococcus aureusthymidine-dependent small-colony variants (TD-SCVs) are frequently isolated from patients with chronicS. aureusinfections after long-term treatment with trimethoprim-sulfamethoxazole (TMP-SMX). While it has been shown that TD-SCVs were associated with mutations in thymidylate synthase (TS;thyA), the impact of such mutations on protein function is lacking. In this study, we showed that mutations inthyAwere leading to inactivity of TS proteins, and TS inactivity led to tremendous impact onS. aureusphysiology and virulence. Whole DNA microarray analysis of the constructed ΔthyAmutant identified severe alterations compared to the wild type. Important virulence regulators (agr,arlRS,sarA) and major virulence determinants (hla,hlb,sspAB, andgeh) were downregulated, while genes important for colonization (fnbA,fnbB,spa,clfB,sdrC, andsdrD) were upregulated. The expression of genes involved in pyrimidine and purine metabolism and nucleotide interconversion changed significantly. NupC was identified as a major nucleoside transporter, which supported growth of the mutant during TMP-SMX exposure by uptake of extracellular thymidine. The ΔthyAmutant was strongly attenuated in virulence models, including aCaenorhabditis eleganskilling model and an acute pneumonia mouse model. This study identified inactivation of TS as the molecular basis of clinical TD-SCV and showed thatthyAactivity has a major role forS. aureusvirulence and physiology.IMPORTANCEThymidine-dependent small-colony variants (TD-SCVs) ofStaphylococcus aureuscarry mutations in the thymidylate synthase (TS) gene (thyA) responsible forde novosynthesis of thymidylate, which is essential for DNA synthesis. TD-SCVs have been isolated from patients treated for long periods with trimethoprim-sulfamethoxazole (TMP-SMX) and are associated with chronic and recurrent infections. In the era of community-associated methicillin-resistantS. aureus, the therapeutic use of TMP-SMX is increasing. Today, the emergence of TD-SCVs is still underestimated due to misidentification in the diagnostic laboratory. This study showed for the first time that mutational inactivation of TS is the molecular basis for the TD-SCV phenotype and that TS inactivation has a strong impact onS. aureusvirulence and physiology. Our study helps to understand the clinical nature of TD-SCVs, which emerge frequently once patients are treated with TMP-SMX.


2012 ◽  
Vol 56 (7) ◽  
pp. 3700-3711 ◽  
Author(s):  
L. G. Garcia ◽  
S. Lemaire ◽  
B. C. Kahl ◽  
K. Becker ◽  
R. A. Proctor ◽  
...  

ABSTRACTStaphylococcus aureussmall-colony variants (SCVs) persist intracellularly, which may contribute to persistence/recurrence of infections and antibiotic failure. We have studied the intracellular fate ofmenDandhemBmutants (corresponding to menadione- and hemin-dependent SCVs, respectively) of the COL methicillin-resistantS. aureus(MRSA) strain and the antibiotic pharmacodynamic profile against extracellular (broth) and intracellular (human THP-1 monocytes) bacteria. Compared to the parental strain, SCVs showed slower extracellular growth (restored upon medium supplementation with menadione or hemin), reduced phagocytosis, and, for themenDSCV, lower intracellular counts at 24 h postinfection. Against extracellular bacteria, daptomycin, gentamicin, rifampin, moxifloxacin, and oritavancin showed similar profiles of activity against all strains, with a static effect obtained at concentrations close to their MICs and complete eradication as maximal effect. In contrast, vancomycin was not bactericidal against SCVs. Against intracellular bacteria, concentration-effect curves fitted sigmoidal regressions for vancomycin, daptomycin, gentamicin, and rifampin (with maximal effects lower than a 2-log decrease in CFU) but biphasic regressions (with a maximal effect greater than a 3-log decrease in CFU) for moxifloxacin and oritavancin, suggesting a dual mode of action against intracellular bacteria. For all antibiotics, these curves were indistinguishable between the strains investigated, except for themenDmutant, which systematically showed a lower amplitude of the concentration-effect response, with markedly reduced minimal efficacy (due to slower growth) but no change in maximal efficacy. The data therefore show that the maximal efficacies of antibiotics are similar against normal-phenotype and menadione- and hemin-dependent strains despite their different intracellular fates, with oritavancin, and to some extent moxifloxacin, being the most effective.


2012 ◽  
Vol 56 (12) ◽  
pp. 6166-6174 ◽  
Author(s):  
Laetitia G. Garcia ◽  
Sandrine Lemaire ◽  
Barbara C. Kahl ◽  
Karsten Becker ◽  
Richard A. Proctor ◽  
...  

ABSTRACTIn a previous study (L. G. Garcia et al., Antimicrob. Agents Chemother. 56:3700–3711, 2012), we evaluated the intracellular fate ofmenDandhemBmutants (corresponding to menadione- and hemin-dependent small-colony variants, respectively) of the parental COL methicillin-resistantStaphylococcus aureusstrain and the pharmacodynamic profile of the intracellular activity of a series of antibiotics in human THP-1 monocytes. We have now examined the phagocytosis and intracellular persistence of the same strains in THP-1 cells activated by phorbol 12-myristate 13-acetate (PMA) and measured the intracellular activity of gentamicin, moxifloxacin, and oritavancin in these cells. Postphagocytosis intracellular counts and intracellular survival were lower in PMA-activated cells, probably due to their higher killing capacities. Gentamicin and moxifloxacin showed a 5- to 7-fold higher potency (lower static concentrations) against the parental strain, itshemBmutant, and the genetically complemented strain in PMA-activated cells and against themenDstrain in both activated and nonactivated cells. This effect was inhibited when cells were incubated withN-acetylcysteine (a scavenger of oxidant species). In parallel, we observed that the MICs of these drugs were markedly reduced if bacteria had been preexposed to H2O2. In contrast, the intracellular potency of oritavancin was not different in activated and nonactivated cells and was not decreased by the addition ofN-acetylcysteine, regardless of the phenotype of the strains. The oritavancin MIC was also unaffected by preincubation of the bacteria with H2O2. Thus, activation of THP-1 cells by PMA may increase the intracellular potency of certain antibiotics (probably due to synergy with reactive oxygen species), but this effect cannot be generalized to all antibiotics.


2011 ◽  
Vol 55 (5) ◽  
pp. 1937-1945 ◽  
Author(s):  
Gabriel Mitchell ◽  
Mariza Gattuso ◽  
Gilles Grondin ◽  
Éric Marsault ◽  
Kamal Bouarab ◽  
...  

ABSTRACTSmall-colony variants (SCVs) often are associated with chronicStaphylococcus aureusinfections, such as those encountered by cystic fibrosis (CF) patients. We report here that tomatidine, the aglycon form of the plant secondary metabolite tomatine, has a potent growth inhibitory activity against SCVs (MIC of 0.12 μg/ml), whereas the growth of normalS. aureusstrains was not significantly altered by tomatidine (MIC, >16 μg/ml). The specific action of tomatidine was bacteriostatic for SCVs and was clearly associated with their dysfunctional electron transport system, as the presence of the electron transport inhibitor 4-hydroxy-2-heptylquinoline-N-oxide (HQNO) caused normalS. aureusstrains to become susceptible to tomatidine. Inversely, the complementation of SCVs' respiratory deficiency conferred resistance to tomatidine. Tomatidine provoked a general reduction of macromolecular biosynthesis but more specifically affected the incorporation of radiolabeled leucine in proteins of HQNO-treatedS. aureusat a concentration corresponding to the MIC against SCVs. Furthermore, tomatidine inhibited the intracellular replication of a clinical SCV in polarized CF-like epithelial cells. Our results suggest that tomatidine eventually will find some use in combination therapy with other traditional antibiotics to eliminate persistent forms ofS. aureus.


2007 ◽  
Vol 190 (3) ◽  
pp. 834-842 ◽  
Author(s):  
Indranil Chatterjee ◽  
Andre Kriegeskorte ◽  
Andreas Fischer ◽  
Susanne Deiwick ◽  
Nadine Theimann ◽  
...  

ABSTRACT Trimethoprim-sulfamethoxazole (SXT)-resistant Staphylococcus aureus thymidine-dependent small-colony variants (TD-SCVs) are frequently isolated from the airways of cystic fibrosis (CF) patients, often in combination with isogenic normal strains if patients were treated with SXT for extended periods. As SXT inhibits the synthesis of tetrahydrofolic acid, which acts as a cofactor for thymidylate synthase (thyA), the survival of TD-SCVs depends exclusively on the availability of external thymidine. Since the underlying mechanism for thymidine dependency is unknown, we investigated if alterations in the thyA nucleotide sequences were responsible for this phenomenon. Sequence analysis of several clinical TD-SCVs and their isogenic normal strains with reference to previously published S. aureus thyA nucleotide sequences was performed. Three clinical TD-SCVs were complemented by transforming TD-SCVs with the vector pCX19 expressing ThyA from S. aureus 8325-4. Transcriptional analysis of metabolic and virulence genes and regulators (agr, hla, spa, citB, thyA, and nupC) was performed by quantitative reverse transcription-PCR. The previously published sequences of thyA and two normal clinical strains were highly conserved, while thyA of four normal strains and four SCVs had nonsynonymous point mutations. In 8/10 SCVs, deletions occurred, resulting in stop codons which were located in 4/10 SCVs close to or within the active site of the protein (dUMP binding). Complementation of TD-SCVs with thyA almost fully reversed the phenotype, growth characteristics, and transcription patterns. In conclusion, we demonstrated that mutations of the thyA gene were responsible for the phenotype of TD-SCVs. Complementation of TD-SCVs with thyA revealed that a functional ThyA protein is necessary and sufficient to change the SCV phenotype and behavior back to normal.


2016 ◽  
Vol 29 (2) ◽  
pp. 401-427 ◽  
Author(s):  
Barbara C. Kahl ◽  
Karsten Becker ◽  
Bettina Löffler

SUMMARYSmall colony variants (SCVs) were first described more than 100 years ago forStaphylococcus aureusand various coagulase-negative staphylococci. Two decades ago, an association between chronic staphylococcal infections and the presence of SCVs was observed. Since then, many clinical studies and observations have been published which tie recurrent, persistent staphylococcal infections, including device-associated infections, bone and tissue infections, and airway infections of cystic fibrosis patients, to this special phenotype. By their intracellular lifestyle, SCVs exhibit so-called phenotypic (or functional) resistance beyond the classical resistance mechanisms, and they can often be retrieved from therapy-refractory courses of infection. In this review, the various clinical infections where SCVs can be expected and isolated, diagnostic procedures for optimized species confirmation, and the pathogenesis of SCVs, including defined underlying molecular mechanisms and the phenotype switch phenomenon, are presented. Moreover, relevant animal models and suggested treatment regimens, as well as the requirements for future research areas, are highlighted.


Author(s):  
Clemens Kittinger ◽  
Daniela Toplitsch ◽  
Bettina Folli ◽  
Lilian Masoud Landgraf ◽  
Gernot Zarfel

One of the most interesting features of Staphylococcus aureus is its ability to switch to a small colony variant (SCV). This switch allows the pathogen to survive periods of antibiotic treatment or pressure from the immune system of the host and further enables it to start the infection once again after the environmental stress declines. However, so far only little is known about this reversion back to the more virulent wild type phenotype. Therefore, this study aimed to analyze the frequency of reversion to the wild type phenotype of thymidine auxotroph S. aureus SCV isolates (TD-SCVs) obtained from patients with cystic fibrosis (CF). With the use of single cell starting cultures, the occurrence of the thymidine prototroph revertants was monitored. The underlying mutational cause of the SCVs and subsequent revertants were analyzed by sequencing the gene coding for thymidylate synthase (ThyA), whose mutations are known to produce thymidine auxotroph S. aureus SCV. In our study, the underlying mutational cause for the switch to the TD-SCV phenotype was primarily point mutations. Out of twelve isolates, seven isolates showed an occurrence of revertants with a frequency ranging from 90.06% to 0.16%. This high variability in the frequency of reversion to the wild type was not expected. However, this variability in the frequency of reversion may also be the key to successful re-infection of the host. Sometimes quick reversion to the wild type proves necessary for survival, whereas other times, staying hidden for a bit longer leads to success in re-colonization of the host.


2009 ◽  
Vol 58 (8) ◽  
pp. 1067-1073 ◽  
Author(s):  
Rachna Singh ◽  
Pallab Ray ◽  
Anindita Das ◽  
Meera Sharma

The presence of persister cells and small-colony variants (SCVs) has been associated with enhanced antibiotic resistance of many organisms in biofilms. This study investigated whether persisters and/or SCVs contribute to the antibiotic resistance of Staphylococcus aureus biofilms. A detailed dose-dependent killing of biofilms and planktonic cells with five antibiotics (oxacillin, cefotaxime, amikacin, ciprofloxacin and vancomycin) was analysed by treating them with each antibiotic at a concentration of 0–100 μg ml−1 at 37 °C for 48 h. The killing of biofilm cells by all of the antibiotics showed the presence of persister cells – most cells in the population died, leaving a fraction that persisted, even at higher concentrations of the antibiotics. These persisters represented a transient resistant phenotype and reverted to a killing curve resembling that of the wild-type parent upon re-exposure to the antibiotics. SCVs were observed in biofilms only after treatment with ciprofloxacin, and these SCVs were of a transient nature. The treatment of planktonic cells with oxacillin, cefotaxime, ciprofloxacin and vancomycin killed the entire population and no persisters were detected. Transient SCVs, observed in planktonic cells following exposure to these antibiotics, were killed at higher antibiotic concentrations. The treatment of planktonic cells with amikacin yielded a small subpopulation of survivors that included persisters (at numbers significantly lower than for the biofilms) and highly resistant, stable SCVs with an increased biofilm-forming capacity in comparison with the wild-type parent. Thus the high resistance of S. aureus biofilms to multiple unrelated antibiotics is largely dependent on the presence of persister cells. Biofilms harbour a large number of persisters in comparison with planktonic cultures, which either do not harbour persisters or harbour only a small number. SCVs, although not specifically associated with S. aureus biofilms, have an increased biofilm-forming capacity and this may explain the frequent isolation of SCVs from biofilm-associated infections. The intrinsic resistance of these variants may in turn contribute to the enhanced antibiotic resistance of the biofilms thus formed.


Sign in / Sign up

Export Citation Format

Share Document