scholarly journals The Inositol Phosphatase SHIP Controls Salmonella enterica Serovar Typhimurium Infection In Vivo

2008 ◽  
Vol 76 (7) ◽  
pp. 2913-2922 ◽  
Author(s):  
Jennifer L. Bishop ◽  
Laura M. Sly ◽  
Gerald Krystal ◽  
B. Brett Finlay

ABSTRACT The SH2 domain-containing inositol 5′-phosphatase, SHIP, negatively regulates various hematopoietic cell functions and is critical for maintaining immune homeostasis. However, whether SHIP plays a role in controlling bacterial infections in vivo remains unknown. Salmonella enterica causes human salmonellosis, a disease that ranges in severity from mild gastroenteritis to severe systemic illness, resulting in significant morbidity and mortality worldwide. The susceptibility of ship +/+and ship −/− mice and bone marrow-derived macrophages to S. enterica serovar Typhimurium infection was compared. ship −/− mice displayed an increased susceptibility to both oral and intraperitoneal serovar Typhimurium infection and had significantly higher bacterial loads in intestinal and systemic sites than ship +/+mice, indicating a role for SHIP in the gut-associated and systemic pathogenesis of serovar Typhimurium in vivo. Cytokine analysis of serum from orally infected mice showed that ship −/− mice produce lower levels of Th1 cytokines than do ship +/+ animals at 2 days postinfection, and in vitro analysis of supernatants taken from infected bone marrow-derived macrophages derived to mimic the in vivo ship−/− alternatively activated (M2) macrophage phenotype correlated with these data. M2 macrophages were the predominant population in vivo in both oral and intraperitoneal infections, since tissue macrophages within the small intestine and peritoneal macrophages from ship −/− mice showed elevated levels of the M2 macrophage markers Ym1 and Arginase 1 compared to ship +/+ cells. Based on these data, we propose that M2 macrophage skewing in ship −/− mice contributes to ineffective clearance of Salmonella in vivo.

2017 ◽  
Vol 85 (9) ◽  
Author(s):  
Edna M. Ondari ◽  
Jennifer N. Heath ◽  
Elizabeth J. Klemm ◽  
Gemma Langridge ◽  
Lars Barquist ◽  
...  

ABSTRACT The ST313 pathovar of Salmonella enterica serovar Typhimurium contributes to a high burden of invasive disease among African infants and HIV-infected adults. It is characterized by genome degradation (loss of coding capacity) and has increased resistance to antibody-dependent complement-mediated killing compared with enterocolitis-causing strains of S. Typhimurium. Vaccination is an attractive disease-prevention strategy, and leading candidates focus on the induction of bactericidal antibodies. Antibody-resistant strains arising through further gene deletion could compromise such a strategy. Exposing a saturating transposon insertion mutant library of S. Typhimurium to immune serum identified a repertoire of S. Typhimurium genes that, when interrupted, result in increased resistance to serum killing. These genes included several involved in bacterial envelope biogenesis, protein translocation, and metabolism. We generated defined mutant derivatives using S. Typhimurium SL1344 as the host. Based on their initial levels of enhanced resistance to killing, yfgA and sapA mutants were selected for further characterization. The S. Typhimurium yfgA mutant lost the characteristic Salmonella rod-shaped appearance, exhibited increased sensitivity to osmotic and detergent stress, lacked very long lipopolysaccharide, was unable to invade enterocytes, and demonstrated decreased ability to infect mice. In contrast, the S. Typhimurium sapA mutants had similar sensitivity to osmotic and detergent stress and lipopolysaccharide profile and an increased ability to infect enterocytes compared with the wild type, but it had no increased ability to cause in vivo infection. These findings indicate that increased resistance to antibody-dependent complement-mediated killing secondary to genetic deletion is not necessarily accompanied by increased virulence and suggest the presence of different mechanisms of antibody resistance.


2010 ◽  
Vol 78 (6) ◽  
pp. 2529-2543 ◽  
Author(s):  
Ascención Torres-Escobar ◽  
María Dolores Juárez-Rodríguez ◽  
Bronwyn M. Gunn ◽  
Christine G. Branger ◽  
Steven A. Tinge ◽  
...  

ABSTRACT A balanced-lethal plasmid expression system that switches from low-copy-number to runaway-like high-copy-number replication (pYA4534) was constructed for the regulated delayed in vivo synthesis of heterologous antigens by vaccine strains. This is an antibiotic resistance-free maintenance system containing the asdA gene (essential for peptidoglycan synthesis) as a selectable marker to complement the lethal chromosomal ΔasdA allele in live recombinant attenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain χ9447. pYA4534 harbors two origins of replication, pSC101 and pUC (low and high copy numbers, respectively). The pUC replication origin is controlled by a genetic switch formed by the operator/promoter of the P22 cro gene (O/Pcro) (PR), which is negatively regulated by an arabinose-inducible P22 c2 gene located on both the plasmid and the chromosome (araC PBAD c2). The absence of arabinose, which is unavailable in vivo, triggers replication to a high-copy-number plasmid state. To validate these vector attributes, the Yersinia pestis virulence antigen LcrV was used to develop a vaccine against plague. An lcrV sequence encoding amino acids 131 to 326 (LcrV196) was optimized for expression in Salmonella, flanked with nucleotide sequences encoding the signal peptide (SS) and the carboxy-terminal domain (CT) of β-lactamase, and cloned into pYA4534 under the control of the Ptrc promoter to generate plasmid pYA4535. Our results indicate that the live Salmonella vaccine strain χ9447 harboring pYA4535 efficiently stimulated a mixed Th1/Th2 immune response that protected mice against lethal challenge with Y. pestis strain CO92 introduced through either the intranasal or subcutaneous route.


2018 ◽  
Vol 86 (9) ◽  
Author(s):  
Vivek Belde ◽  
Matthew P. Cravens ◽  
Dania Gulandijany ◽  
Justin A. Walker ◽  
Isabel Palomo-Caturla ◽  
...  

ABSTRACTB cell antigen receptor (BCR) diversity increases by several orders of magnitude due to the action of terminal deoxynucleotidyl transferase (TdT) during V(D)J recombination. Unlike adults, infants have limited BCR diversity, in part due to reduced expression of TdT. Since human infants and young mice respond poorly to polysaccharide vaccines, such as the pneumococcal polysaccharide vaccine Pneumovax23 and Vi polysaccharide (ViPS) ofSalmonella entericaserovar Typhi, we tested the contribution of TdT-mediated BCR diversity in response to these vaccines. We found that TdT+/−and TdT−/−mice generated comparable antibody responses to Pneumovax23 and survivedStreptococcus pneumoniaechallenge. Moreover, passive immunization of B cell-deficient mice with serum from Pneumovax23-immunized TdT+/−or TdT−/−mice conferred protection. TdT+/−and TdT−/−mice generated comparable levels of anti-ViPS antibodies and antibody-dependent, complement-mediated bactericidal activity againstS. Typhiin vitro. To test the protective immunity conferred by ViPS immunizationin vivo, TdT+/−and TdT−/−mice were challenged with a chimericSalmonella entericaserovar Typhimurium strain expressing ViPS, since mice are nonpermissive hosts forS. Typhi infection. Compared to their unimmunized counterparts, immunized TdT+/−and TdT−/−mice challenged with ViPS-expressingS. Typhimurium exhibited a significant reduction in the bacterial burden and liver pathology. These data suggest that the impaired antibody response to the Pneumovax23 and ViPS vaccines in the young is not due to limited TdT-mediated BCR diversification.


2005 ◽  
Vol 73 (12) ◽  
pp. 8433-8436 ◽  
Author(s):  
A. A. Fadl ◽  
J. Sha ◽  
G. R. Klimpel ◽  
J. P. Olano ◽  
C. L. Galindo ◽  
...  

ABSTRACT We constructed Salmonella enterica serovar Typhimurium double-knockout mutants in which either the lipoprotein A (lppA) or the lipoprotein B (lppB) gene was deleted from an msbB-negative background strain by marker exchange mutagenesis. These mutants were highly attenuated when tested with in vitro and in vivo models of Salmonella pathogenesis.


2004 ◽  
Vol 186 (16) ◽  
pp. 5230-5238 ◽  
Author(s):  
Radha Krishnakumar ◽  
Maureen Craig ◽  
James A. Imlay ◽  
James M. Slauch

ABSTRACT Salmonella enterica serovar Typhimurium produces two Cu/Zn cofactored periplasmic superoxide dismutases, SodCI and SodCII. While mutations in sodCI attenuate virulence eightfold, loss of SodCII does not confer a virulence phenotype, nor does it enhance the defect observed in a sodCI background. Despite this in vivo phenotype, SodCI and SodCII are expressed at similar levels in vitro during the stationary phase of growth. By exchanging the open reading frames of sodCI and sodCII, we found that SodCI contributes to virulence when placed under the control of the sodCII promoter. In contrast, SodCII does not contribute to virulence even when expressed from the sodCI promoter. Thus, the disparity in virulence phenotypes is due primarily to some physical difference between the two enzymes. In an attempt to identify the unique property of SodCI, we have tested factors that might affect enzyme activity inside a phagosome. We found no significant difference between SodCI and SodCII in their resistance to acid, resistance to hydrogen peroxide, or ability to obtain copper in a copper-limiting environment. Both enzymes are synthesized as apoenzymes in the absence of copper and can be fully remetallated when copper is added. The one striking difference that we noted is that, whereas SodCII is released normally by an osmotic shock, SodCI is “tethered” within the periplasm by an apparently noncovalent interaction. We propose that this novel property of SodCI is crucial to its ability to contribute to virulence in serovar Typhimurium.


2001 ◽  
Vol 69 (12) ◽  
pp. 7413-7418 ◽  
Author(s):  
Tahar van der Straaten ◽  
Angela van Diepen ◽  
Kitty Kwappenberg ◽  
Sjaak van Voorden ◽  
Kees Franken ◽  
...  

ABSTRACT Upon contact with host cells, the intracellular pathogenSalmonella enterica serovar Typhimurium promotes its uptake, targeting, and survival in intracellular niches. In this process, the bacterium evades the microbicidal effector mechanisms of the macrophage, including oxygen intermediates. This study reports the phenotypic and genotypic characterization of an S. enterica serovar Typhimurium mutant that is hypersusceptible to superoxide. The susceptible phenotype is due to a MudJ insertion-inactivation of a previously undescribedSalmonella gene designated sspJ that is located between 54.4 and 64 min of the Salmonellachromosome and encodes a 392-amino-acid protein. In vivo, upon intraperitoneal injection of 104 to 107bacteria in C3H/HeN and 101 to 104 bacteria in BALB/c mice, the mutant strain was less virulent than the wild type. Consistent with this finding, during the first hour after ingestion by macrophage-like J774 and RAW264.7 cells in vitro, the intracellular killing of the strain carrying sspJ::MudJ is enhanced fivefold over that of wild-type microorganisms. Wild-type salmonellae displayed significant intracellular replication during the first 24 h after uptake, but sspJ::MudJ mutants failed to do so. This phenotype could be restored to that of the wild type by sspJ complementation. The SspJ protein is found in the cytoplasmic membrane and periplasmic space. Amino acid sequence homology analysis did reveal a leader sequence and putative pyrroloquinoline quinone-binding domains, but no putative protein function. We excluded the possibility that SspJ is a scavenger of superoxide or has superoxide dismutase activity.


2001 ◽  
Vol 69 (7) ◽  
pp. 4673-4677 ◽  
Author(s):  
Chris A. Allen ◽  
Paula J. Fedorka-Cray ◽  
Andrés Vazquez-Torres ◽  
Mitsu Suyemoto ◽  
Craig Altier ◽  
...  

ABSTRACT Multidrug-resistant Salmonella enterica serovar Typhimurium phage type DT104 has become a widespread cause of human and other animal infection worldwide. The severity of clinical illness inS. enterica serovar Typhimurium DT104 outbreaks has led to the suggestion that this strain possesses enhanced virulence. In the present study, in vitro and in vivo virulence-associated phenotypes of several clinical isolates of S. enterica serovar Typhimurium DT104 were examined and compared to S. entericaserovar Typhimurium ATCC 14028s. The ability of these DT104 isolates to survive within murine peritoneal macrophages, invade cultured epithelial cells, resist antimicrobial actions of reactive oxygen and nitrogen compounds, and cause lethal infection in mice were assessed. Our results failed to demonstrate that S. enterica serovar Typhimurium DT104 isolates are more virulent than S. enterica serovar Typhimurium ATCC 14028s.


Sign in / Sign up

Export Citation Format

Share Document