scholarly journals The Secreted Effector Protein EspZ Is Essential for Virulence of Rabbit Enteropathogenic Escherichia coli

2015 ◽  
Vol 83 (3) ◽  
pp. 1139-1149 ◽  
Author(s):  
John Scott Wilbur ◽  
Wyatt Byrd ◽  
Shylaja Ramamurthy ◽  
Hannah E. Ledvina ◽  
Khaldoon Khirfan ◽  
...  

Attaching and effacing (A/E) pathogens adhere intimately to intestinal enterocytes and efface brush border microvilli. A key virulence strategy of A/E pathogens is the type III secretion system (T3SS)-mediated delivery of effector proteins into host cells. The secreted protein EspZ is postulated to promote enterocyte survival by regulating the T3SS and/or by modulating epithelial signaling pathways. To explore the role of EspZ in A/E pathogen virulence, we generated an isogenicespZdeletion strain (ΔespZ) and correspondingcis-complemented derivatives of rabbit enteropathogenicEscherichia coliand compared their abilities to regulate the T3SS and influence host cell survivalin vitro. For virulence studies, rabbits infected with these strains were monitored for bacterial colonization, clinical signs, and intestinal tissue alterations. Consistent with data from previous reports,espZ-transfected epithelial cells were refractory to infection-dependent effector translocation. Also, the ΔespZstrain induced greater host cell death than did the parent and complemented strains. In rabbit infections, fecal ΔespZstrain levels were 10-fold lower than those of the parent strain at 1 day postinfection, while the complemented strain was recovered at intermediate levels. In contrast to the parent and complemented mutants, ΔespZmutant fecal carriage progressively decreased on subsequent days. ΔespZmutant-infected animals gained weight steadily over the infection period, failed to show characteristic disease symptoms, and displayed minimal infection-induced histological alterations. Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining of intestinal sections revealed increased epithelial cell apoptosis on day 1 after infection with the ΔespZstrain compared to animals infected with the parent or complemented strains. Thus, EspZ-dependent host cell cytoprotection likely prevents epithelial cell death and sloughing and thereby promotes bacterial colonization.

2021 ◽  
Vol 17 (6) ◽  
pp. e1009658
Author(s):  
Cristina Giogha ◽  
Nichollas E. Scott ◽  
Tania Wong Fok Lung ◽  
Georgina L. Pollock ◽  
Marina Harper ◽  
...  

During infection, enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) directly manipulate various aspects of host cell function through the translocation of type III secretion system (T3SS) effector proteins directly into the host cell. Many T3SS effector proteins are enzymes that mediate post-translational modifications of host proteins, such as the glycosyltransferase NleB1, which transfers a single N-acetylglucosamine (GlcNAc) to arginine residues, creating an Arg-GlcNAc linkage. NleB1 glycosylates death-domain containing proteins including FADD, TRADD and RIPK1 to block host cell death. The NleB1 paralogue, NleB2, is found in many EPEC and EHEC strains but to date its enzymatic activity has not been described. Using in vitro glycosylation assays combined with mass spectrometry, we found that NleB2 can utilize multiple sugar donors including UDP-glucose, UDP-GlcNAc and UDP-galactose during glycosylation of the death domain protein, RIPK1. Sugar donor competition assays demonstrated that UDP-glucose was the preferred substrate of NleB2 and peptide sequencing identified the glycosylation site within RIPK1 as Arg603, indicating that NleB2 catalyses arginine glucosylation. We also confirmed that NleB2 catalysed arginine-hexose modification of Flag-RIPK1 during infection of HEK293T cells with EPEC E2348/69. Using site-directed mutagenesis and in vitro glycosylation assays, we identified that residue Ser252 in NleB2 contributes to the specificity of this distinct catalytic activity. Substitution of Ser252 in NleB2 to Gly, or substitution of the corresponding Gly255 in NleB1 to Ser switches sugar donor preference between UDP-GlcNAc and UDP-glucose. However, this switch did not affect the ability of the NleB variants to inhibit inflammatory or cell death signalling during HeLa cell transfection or EPEC infection. NleB2 is thus the first identified bacterial Arg-glucose transferase that, similar to the NleB1 Arg-GlcNAc transferase, inhibits host protein function by arginine glycosylation.


2017 ◽  
Vol 85 (4) ◽  
Author(s):  
Georgina L. Pollock ◽  
Clare V. L. Oates ◽  
Cristina Giogha ◽  
Tania Wong Fok Lung ◽  
Sze Ying Ong ◽  
...  

ABSTRACT During infection, enteropathogenic Escherichia coli (EPEC) translocates effector proteins directly into the cytosol of infected enterocytes using a type III secretion system (T3SS). Once inside the host cell, these effector proteins subvert various immune signaling pathways, including death receptor-induced apoptosis. One such effector protein is the non-locus of enterocyte effacement (LEE)-encoded effector NleB1, which inhibits extrinsic apoptotic signaling via the FAS death receptor. NleB1 transfers a single N-acetylglucosamine (GlcNAc) residue to Arg117 in the death domain of Fas-associated protein with death domain (FADD) and inhibits FAS ligand (FasL)-stimulated caspase-8 cleavage. Another effector secreted by the T3SS is NleF. Previous studies have shown that NleF binds to and inhibits the activity of caspase-4, -8, and -9 in vitro. Here, we investigated a role for NleF in the inhibition of FAS signaling and apoptosis during EPEC infection. We show that NleF prevents the cleavage of caspase-8, caspase-3, and receptor-interacting serine/threonine protein kinase 1 (RIPK1) in response to FasL stimulation. When translocated into host cells by the T3SS or expressed ectopically, NleF also blocked FasL-induced cell death. Using the EPEC-like mouse pathogen Citrobacter rodentium, we found that NleB but not NleF contributed to colonization of mice in the intestine. Hence, despite their shared ability to block FasL/FAS signaling, NleB and NleF have distinct roles during infection.


2006 ◽  
Vol 74 (2) ◽  
pp. 839-849 ◽  
Author(s):  
Chen Nadler ◽  
Yulia Shifrin ◽  
Shani Nov ◽  
Simi Kobi ◽  
Ilan Rosenshine

ABSTRACT Upon infection of host cells, enteropathogenic Escherichia coli (EPEC) delivers a set of effector proteins into the host cell cytoplasm via the type III secretion system (TTSS). The effectors subvert various host cell functions. We found that EPEC interferes with the spreading and ultimately with the attachment of suspended fibroblasts or epithelial cells, and we isolated mini-Tn10kan insertion mutants that failed to similarly affect host cells. In most mutants, the insertion sites were mapped to genes encoding TTSS components, including cesD, escC, escJ, escV, espD, sepL, espB, and escF. Other mutants contained insertions in micC or upstream of bfpP, yehL, or ydeP. The insertion upstream of ydeP was associated with a reduction in TTSS protein production and was studied further. To determine whether the apparent repression was due to constitutive expression of the downstream encoded genes, ydeP and ydeO expression vectors were constructed. Expression of recombinant YdeP, YdeO, or EvgA, a positive regulator of both ydeP and ydeO, repressed TTSS protein production. Our results suggest that upon activation of the EvgAS two-component system, EvgA (the response regulator) activates both ydeP and ydeO expression and that YdeP and YdeO act conjointly, directly or indirectly repressing expression of the TTSS genes.


2021 ◽  
Author(s):  
Jinhyeob Ryu ◽  
Ryota Otsubo ◽  
Hiroshi Ashida ◽  
Tamako Iida ◽  
Akio Abe ◽  
...  

SummaryTranslocated intimin receptor (Tir) is an essential bacterial factor for enteropathogenic Escherichia coli (EPEC) to establish Tir-intimin interaction-mediated adherence to the epithelial cell and to form actin pedestal structures beneath the adherent bacteria. However, it remains unclear how the host cells eliminate Tir protein after infection. Here we show that intracellular translocated Tir is degraded via the host ubiquitin- proteasome system. We found that host CBL-C, an E3 ubiquitin-protein ligase, bound to and ubiquitinated the 454 tyrosine-phosphorylated Tir protein. Tir ubiquitination leads to proteasome-dependent degradation and attenuated EPEC colonization of the epithelial cell. Using Citrobacter rodentium, a mouse model for EPEC, we demonstrated that infection with C. rodentium mutant expressing a tyrosine- phenylalanine-substituted Tir (CBL-C resistant) showed increased bacterial loads in the colon and lethality compared with infection with C. rodentium expressing wild-type Tir. These results indicate that CBL-C is a critical host defense factor that determines the fate of cytosolic Tir and terminates bacterial colonization.Graphical Abstracts


1999 ◽  
Vol 67 (5) ◽  
pp. 2575-2584 ◽  
Author(s):  
John K. Crane ◽  
Swastika Majumdar ◽  
Donald F. Pickhardt

ABSTRACT Enteropathogenic Escherichia coli (EPEC) is a cause of prolonged watery diarrhea in children in developing countries. The ability of EPEC to kill host cells was investigated in vitro in assays using two human cultured cell lines, HeLa (cervical) and T84 (colonic). EPEC killed epithelial cells as assessed by permeability to the vital dyes trypan blue and propidium iodide. In addition, EPEC triggered changes in the host cell, suggesting apoptosis as the mode of death; such changes included early expression of phosphatidylserine on the host cell surface and internucleosomal cleavage of host cell DNA. Genistein, an inhibitor of tyrosine kinases, and wortmannin, an inhibitor of host phosphatidylinositol 3-kinase, markedly increased EPEC-induced cell death and enhanced the features of apoptosis. EPEC-induced cell death was contact dependent and required adherence of live bacteria to the host cell. A quantitative assay for EPEC-induced cell death was developed by using the propidium iodide uptake method adapted to a fluorescence plate reader. With EPEC, the rate and extent of host cell death were less that what has been reported forSalmonella, Shigella, and Yersinia, three other genera of enteric bacteria known to cause apoptosis. However, rapid apoptosis of the host cell may not favor the pathogenic strategy of EPEC, a mucosa-adhering, noninvasive pathogen.


2005 ◽  
Vol 289 (3) ◽  
pp. G407-G417 ◽  
Author(s):  
John K. Crane ◽  
Tonniele M. Naeher ◽  
Shilpa S. Choudhari ◽  
Elisa M. Giroux

We previously reported that enteropathogenic Escherichia coli (EPEC) infection triggered a large release of ATP from the host cell that was correlated with and dependent on EPEC-induced killing of the host cell. We noted, however, that under some circumstances, EPEC-induced ATP release exceeded that which could be accounted for on the basis of host cell killing. For example, EPEC-induced ATP release was potentiated by noncytotoxic agents that elevate host cell cAMP, such as forskolin and cholera toxin, and by exposure to hypotonic medium. These findings and the performance of the EPEC espF mutant led us to hypothesize that the CFTR plays a role in EPEC-induced ATP release that is independent of cell death. We report the results of experiments using specific, cell-permeable CFTR activators and inhibitors, as well as transfection of the CFTR into non-CFTR-expressing cell lines, which incriminate the CFTR as a second pathway for ATP release from host cells. Increased ATP release via CFTR is not accompanied by an increase in EPEC adherence to transfected cells. The CFTR-dependent ATP release pathway becomes activated endogenously later in EPEC infection, and this activation is mediated, at least in part, by generation of extracellular adenosine from the breakdown of released ATP.


2005 ◽  
Vol 73 (2) ◽  
pp. 1243-1251 ◽  
Author(s):  
Robert K Shaw ◽  
Jennifer Cleary ◽  
Michael S. Murphy ◽  
Gad Frankel ◽  
Stuart Knutton

ABSTRACT Enteropathogenic Escherichia coli (EPEC) strains deliver effector proteins Tir, EspB, Map, EspF, EspH, and EspG into host cells to induce brush border remodeling and produce attaching and effacing (A/E) lesions on small intestinal enterocytes. In this study, the role of individual EPEC effectors in brush border remodeling and A/E lesion formation was investigated with an in vitro human small intestinal organ culture model of EPEC infection and specific effector mutants. tir, map, espB, and espH mutants produced “footprint” phenotypes due to close bacterial adhesion but subsequent loss of bacteria; an espB mutant and other type III secretion system mutants induced a “noneffacing footprint” associated with intact brush border microvilli, whereas a tir mutant was able to efface microvilli resulting in an “effacing footprint”; map and espH mutants produced A/E lesions, but loss of bacteria resulted in a “pedestal footprint.” An espF mutant produced typical A/E lesions without associated microvillous elongation. An espG mutant was indistinguishable from the wild type. These observations indicate that Tir, Map, EspF, and EspH effectors play a role in brush border remodeling and production of mature A/E lesions.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Tianyuan Jia ◽  
Bin Liu ◽  
Huiqian Mu ◽  
Chengqian Qian ◽  
Lu Wang ◽  
...  

ABSTRACT Enterohemorrhagic Escherichia coli serotype O157:H7 (O157) is a critical, foodborne, human intestinal pathogen that causes severe acute hemorrhagic diarrhea, abdominal cramping, and even death. Small RNAs (sRNAs) are noncoding regulatory molecules that sense environmental changes and trigger various virulence-related signaling pathways; however, few such sRNAs have been identified in O157. Here, we report a novel sRNA, EsrF that senses high ammonium concentrations in the colon and enhances O157 pathogenicity by promoting bacterial motility and adhesion to host cells. Specifically, EsrF was found to directly interact with the 5′ untranslated regions of the flagellar biosynthetic gene, flhB, mRNA and increase its abundance, thereby upregulating expression of essential flagellar genes, including flhD, flhC, fliA, and fliC, leading to elevated O157 motility and virulence. Meanwhile, an infant rabbit model of O157 infection showed that deletion of esrF and flhB significantly attenuates O157 pathogenicity. Furthermore, NtrC—the response regulator of the NtrC/B two-component system—was found to exert direct, negative regulation of esrF expression. Meanwhile, high ammonium concentrations in the colon release the inhibitory effect of NtrC on esrF, thereby enhancing its expression and subsequently promoting bacterial colonization in the host colon. Our work reveals a novel, sRNA-centered, virulence-related signaling pathway in O157 that senses high ammonium concentrations. These findings provide novel insights for future research on O157 pathogenesis and targeted treatment strategies. IMPORTANCE The process by which bacteria sense environmental cues to regulate their virulence is complex. Several studies have focused on regulating the expression of the locus of enterocyte effacement pathogenicity island in the typical gut pathogenic bacterium, O157. However, few investigations have addressed the regulation of other virulence factors in response to intestinal signals. In this study, we report our discovery of a novel O157 sRNA, EsrF, and demonstrate that it contributed to bacterial motility and virulence in vitro and in vivo through the regulation of bacterial flagellar synthesis. Furthermore, we show that high ammonium concentrations in the colon induced esrF expression to promote bacterial virulence by releasing the repression of esrF by NtrC. This study highlights the importance of sRNA in regulating the motility and pathogenicity of O157.


2001 ◽  
Vol 69 (12) ◽  
pp. 7356-7364 ◽  
Author(s):  
Maan Abul-Milh ◽  
Ying Wu ◽  
Bedy Lau ◽  
Clifford A. Lingwood ◽  
Debora Barnett Foster

ABSTRACT Infection with enteropathogenic Escherichia coli (EPEC) is a major cause of severe infantile diarrhea, particularly in parts of the developing world. The bundle-forming pilus (BFP) of EPEC is an established virulence factor encoded on the EPEC adherence factor plasmid (EAF) and has been implicated in both localized adherence to host cells and bacterial autoaggregation. We investigated the role of BFP in the ability of EPEC binding to kill host epithelial cells. BFP-expressing strains killed all three cell lines tested, comprising HEp-2 (laryngeal), HeLa (cervical), and Caco-2 (colonic) cells. Analysis of phosphatidylserine expression, internucleosomal cleavage of host cell DNA, and morphological changes detected by electron microscopy indicated evidence of apoptosis. The extent of cell death was significantly greater for BFP-expressing strains, including E2348/69, a wild-type clinical isolate, as well as for a laboratory strain, HB101, transformed with a bfp-carrying plasmid. Strains which did not express BFP induced significantly less cell death, including a bfpA disruptional mutant of E2348/69, EAF plasmid-cured E2348/69, HB101, and HB101 complemented with the locus of enterocyte effacement pathogenicity island. These results indicate a direct correlation between BFP expression and induction of cell death, including apoptosis, an event which may involve the targeting of host cell membrane phosphatidylethanolamine.


Microbiology ◽  
2010 ◽  
Vol 156 (4) ◽  
pp. 1120-1133 ◽  
Author(s):  
J. Antonio Ibarra ◽  
Leigh A. Knodler ◽  
Daniel E. Sturdevant ◽  
Kimmo Virtaneva ◽  
Aaron B. Carmody ◽  
...  

Salmonella invade non-phagocytic cells by inducing massive actin rearrangements, resulting in membrane ruffle formation and phagocytosis of the bacteria. This process is mediated by a cohort of effector proteins translocated into the host cell by type III secretion system 1, which is encoded by genes in the Salmonella pathogenicity island (SPI) 1 regulon. This network is precisely regulated and must be induced outside of host cells. In vitro invasive Salmonella are prepared by growth in synthetic media although the details vary. Here, we show that culture conditions affect the frequency, and therefore invasion efficiency, of SPI1-induced bacteria and also can affect the ability of Salmonella to adapt to its intracellular niche following invasion. Aerobically grown late-exponential-phase bacteria were more invasive and this was associated with a greater frequency of SPI1-induced, motile bacteria, as revealed by single-cell analysis of gene expression. Culture conditions also affected the ability of Salmonella to adapt to the intracellular environment, since they caused marked differences in intracellular replication. These findings show that induction of SPI1 under different pre-invasion growth conditions can affect the ability of Salmonella to interact with eukaryotic host cells.


Sign in / Sign up

Export Citation Format

Share Document