scholarly journals Functional Differences and Interactions between the Escherichia coli Type III Secretion System Effectors NleH1 and NleH2

2012 ◽  
Vol 80 (6) ◽  
pp. 2133-2140 ◽  
Author(s):  
Thanh H. Pham ◽  
Xiaofei Gao ◽  
Karen Tsai ◽  
Rachel Olsen ◽  
Fengyi Wan ◽  
...  

ABSTRACTThe human pathogens enterohemorrhagic and enteropathogenicEscherichia coli(EHEC and EPEC), as well as the related mouse pathogenCitrobacter rodentium, utilize a type III secretion system (T3SS) to inject multiple effector proteins into host cells. TheE. coliO157:H7 strain EDL933 carries two copies of non-locus of enterocyte effacement (LEE)-encoded protein H, designated NleH1 and NleH2, both of which bind to the human ribosomal protein S3 (RPS3), a subunit of NF-κB transcriptional complexes. In this study, we describe significant functional differences between NleH1 and NleH2 in their ability to regulate the host NF-κB pathway. We show that the EHEC and EPEC NleH effectors are functionally equivalent in their ability to affect RPS3 nuclear translocation. NleH1, but not NleH2, inhibited NF-κB activity without altering the kinetics of IκBα phosphorylation/degradation. We also determined that the class I PSD-95/Disc Large/ZO-1 (PDZ)-binding domain of NleH was important for its activity in the NF-κB pathway. In addition to binding RPS3, we found that NleH1 and NleH2 are able to bind to each otherin vitroandin vivo, suggesting an additional mechanism by which theE. coliNleH effectors may regulate the extent and duration of NF-κB activation after their T3SS-dependent translocation. We also performed mouse infection experiments and established that mouse mortality andCitrobactercolonization were reduced in mice infected with ΔnleH. Complementing ΔnleHwith NleH1 restoredCitrobactervirulence and colonization to wild-type levels, whereas complementing with NleH2 reduced them. Taken together, our data show that NleH1 and NleH2 have pronounced functional differences in their ability to alter host transcriptional responses to bacterial infection.

mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Cedric N. Berger ◽  
Valerie F. Crepin ◽  
Kobi Baruch ◽  
Aurelie Mousnier ◽  
Ilan Rosenshine ◽  
...  

ABSTRACTTranslocation of effector proteins via a type III secretion system (T3SS) is a widespread infection strategy among Gram-negative bacterial pathogens. Each pathogen translocates a particular set of effectors that subvert cell signaling in a way that suits its particular infection cycle. However, as effector unbalance might lead to cytotoxicity, the pathogens must employ mechanisms that regulate the intracellular effector concentration. We present evidence that the effector EspZ controls T3SS effector translocation from enteropathogenic (EPEC) and enterohemorrhagic (EHEC)Escherichia coli. Consistently, an EPECespZmutant is highly cytotoxic. Following ectopic expression, we found that EspZ inhibited the formation of actin pedestals as it blocked the translocation of Tir, as well as other effectors, including Map and EspF. Moreover, during infection EspZ inhibited effector translocation following superinfection. Importantly, while EspZ of EHEC O157:H7 had a universal “translocation stop” activity, EspZ of EPEC inhibited effector translocation from typical EPEC strains but not from EHEC O157:H7 or its progenitor, atypical EPEC O55:H7. We found that the N and C termini of EspZ, which contains two transmembrane domains, face the cytosolic leaflet of the plasma membrane at the site of bacterial attachment, while the extracellular loop of EspZ is responsible for its strain-specific activity. These results show that EPEC and EHEC acquired a sophisticated mechanism to regulate the effector translocation.IMPORTANCEEnteropathogenicEscherichia coli(EPEC) and enterohemorrhagicE. coli(EHEC) are important diarrheal pathogens responsible for significant morbidity and mortality in developing countries and the developed world, respectively. The virulence strategy of EPEC and EHEC revolves around a conserved type III secretion system (T3SS), which translocates bacterial proteins known as effectors directly into host cells. Previous studies have shown that when cells are infected in two waves with EPEC, the first wave inhibits effector translocation by the second wave in a T3SS-dependent manner, although the factor involved was not known. Importantly, we identified EspZ as the effector responsible for blocking protein translocation following a secondary EPEC infection. Interestingly, we found that while EspZ of EHEC can block protein translocation from both EPEC and EHEC strains, EPEC EspZ cannot block translocation from EHEC. These studies show that EPEC and EHEC employ a novel infection strategy to regulate T3SS translocation.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Elizabeth A. Cameron ◽  
Vanessa Sperandio ◽  
Gary M. Dunny

ABSTRACT The gut microbiota can significantly impact invading pathogens and the disease they cause; however, many of the mechanisms that dictate commensal-pathogen interactions remain unclear. Enterohemorrhagic Escherichia coli (EHEC) is a potentially lethal human intestinal pathogen that uses microbiota-derived molecules as cues to efficiently regulate virulence factor expression. Here, we investigate the interaction between EHEC and Enterococcus faecalis, a common human gut commensal, and show that E. faecalis affects both expression and activity of the EHEC type III secretion system (T3SS) via two distinct mechanisms. First, in the presence of E. faecalis there is increased transcription of genes encoding the EHEC T3SS. This leads to increased effector translocation and ultimately greater numbers of pedestals formed on host cells. The same effect was observed with several strains of enterococci, suggesting that it is a general characteristic of this group. In a mechanism separate from E. faecalis-induced transcription of the T3SS, we report that an E. faecalis-secreted protease, GelE, cleaves a critical structural component of the EHEC T3SS, EspB. Our data suggest that this cleavage actually increases effector translocation by the T3SS, supporting a model where EspB proteolysis promotes maximum T3SS activity. Finally, we report that treatment of EHEC with E. faecalis-conditioned cell-free medium is insufficient to induce increased T3SS expression, suggesting that this effect relies on cell contact between E. faecalis and EHEC. This work demonstrates a complex interaction between a human commensal and pathogen that impacts both expression and function of a critical virulence factor. IMPORTANCE This work reveals a complex and multifaceted interaction between a human gut commensal, Enterococcus faecalis, and a pathogen, enterohemorrhagic E. coli. We demonstrate that E. faecalis enhances expression of the enterohemorrhagic E. coli type III secretion system and that this effect likely depends on cell contact between the commensal and the pathogen. Additionally, the GelE protease secreted by E. faecalis cleaves a critical structural component of the EHEC type III secretion system. In agreement with previous studies, we find that this cleavage actually increases effector protein delivery into host cells by the secretion system. This work demonstrates that commensal bacteria can significantly shape expression and activity of pathogen virulence factors, which may ultimately shape the progression of disease.


2016 ◽  
Vol 144 (13) ◽  
pp. 2824-2830 ◽  
Author(s):  
S. WANG ◽  
X. LIU ◽  
X. XU ◽  
Y. ZHAO ◽  
D. YANG ◽  
...  

SUMMARYPathogens utilize type III secretion systems to deliver effector proteins, which facilitate bacterial infections. The Escherichia coli type III secretion system 2 (ETT2) which plays a crucial role in bacterial virulence, is present in the majority of E. coli strains, although ETT2 has undergone widespread mutational attrition. We investigated the distribution and characteristics of ETT2 in avian pathogenic E. coli (APEC) isolates and identified five different ETT2 isoforms, including intact ETT2, in 57·6% (141/245) of the isolates. The ETT2 locus was present in the predominant APEC serotypes O78, O2 and O1. All of the ETT2 loci in the serotype O78 isolates were degenerate, whereas an intact ETT2 locus was mostly present in O1 and O2 serotype strains, which belong to phylogenetic groups B2 and D, respectively. Interestingly, a putative second type III secretion-associated locus (eip locus) was present only in the isolates with an intact ETT2. Moreover, ETT2 was more widely distributed in APEC isolates and exhibited more isoforms compared to ETT2 in human extraintestinal pathogenic E. coli, suggesting that APEC might be a potential risk to human health. However, there was no distinct correlation between ETT2 and other virulence factors in APEC.


2019 ◽  
Vol 201 (22) ◽  
Author(s):  
Josh S. Sharp ◽  
Arne Rietsch ◽  
Simon L. Dove

ABSTRACT Pseudomonas aeruginosa is an important opportunistic pathogen that employs a type III secretion system (T3SS) to inject effector proteins into host cells. Using a protein depletion system, we show that the endoribonuclease RNase E positively regulates expression of the T3SS genes. We also present evidence that RNase E antagonizes the expression of genes of the type VI secretion system and limits biofilm production in P. aeruginosa. Thus, RNase E, which is thought to be the principal endoribonuclease involved in the initiation of RNA degradation in P. aeruginosa, plays a key role in controlling the production of factors involved in both acute and chronic stages of infection. Although the posttranscriptional regulator RsmA is also known to positively regulate expression of the T3SS genes, we find that RNase E does not appreciably influence the abundance of RsmA in P. aeruginosa. Moreover, we show that RNase E still exerts its effects on T3SS gene expression in cells lacking all four of the key small regulatory RNAs that function by sequestering RsmA. IMPORTANCE The type III secretion system (T3SS) is a protein complex produced by many Gram-negative pathogens. It is capable of injecting effector proteins into host cells that can manipulate cell metabolism and have toxic effects. Understanding how the T3SS is regulated is important in understanding the pathogenesis of bacteria with such systems. Here, we show that RNase E, which is typically thought of as a global regulator of RNA stability, plays a role in regulating the T3SS in Pseudomonas aeruginosa. Depleting RNase E results in the loss of T3SS gene expression as well as a concomitant increase in biofilm formation. These observations are reminiscent of the phenotypes associated with the loss of activity of the posttranscriptional regulator RsmA. However, RNase E-mediated regulation of these systems does not involve changes in the abundance of RsmA and is independent of the known small regulatory RNAs that modulate RsmA activity.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Netanel Elbaz ◽  
Yaakov Socol ◽  
Naama Katsowich ◽  
Ilan Rosenshine

ABSTRACT The transition from a planktonic lifestyle to a host-attached state is often critical for bacterial virulence. Upon attachment to host cells, enteropathogenic Escherichia coli (EPEC) employs a type III secretion system (T3SS) to inject into the host cells ∼20 effector proteins, including Tir. CesT, which is encoded from the same operon downstream of tir, is a Tir-bound chaperone that facilitates Tir translocation. Upon Tir translocation, the liberated CesT remains in the bacterial cytoplasm and antagonizes the posttranscriptional regulator CsrA, thus eliciting global regulation in the infecting pathogen. Importantly, tight control of the Tir/CesT ratio is vital, since an uncontrolled surge in free CesT levels may repress CsrA in an untimely manner, thus abrogating colonization. We investigated how fluctuations in Tir translation affect the regulation of this ratio. By creating mutations that cause the premature termination of Tir translation, we revealed that the untranslated tir mRNA becomes highly unstable, resulting in a rapid drop in cesT mRNA levels and, thus, CesT levels. This mechanism couples Tir and CesT levels to ensure a stable Tir/CesT ratio. Our results expose an additional level of regulation that enhances the efficacy of the initial interaction of EPEC with the host cell, providing a better understanding of the bacterial switch from the planktonic to the cell-adherent lifestyle. IMPORTANCE Host colonization by extracellular pathogens often entails the transition from a planktonic lifestyle to a host-attached state. Enteropathogenic E. coli (EPEC), a Gram-negative pathogen, attaches to the intestinal epithelium of the host and employs a type III secretion system (T3SS) to inject effector proteins into the cytoplasm of infected cells. The most abundant effector protein injected is Tir, whose translocation is dependent on the Tir-bound chaperon CesT. Upon Tir injection, the liberated CesT binds to and inhibits the posttranscriptional regulator CsrA, resulting in reprogramming of gene expression in the host-attached bacteria. Thus, adaptation to the host-attached state involves dynamic remodeling of EPEC gene expression, which is mediated by the relative levels of Tir and CesT. Fluctuating from the optimal Tir/CesT ratio results in a decrease in EPEC virulence. Here we elucidate a posttranscriptional circuit that prevents sharp variations from this ratio, thus improving host colonization.


2005 ◽  
Vol 187 (23) ◽  
pp. 8164-8171 ◽  
Author(s):  
Diana Ideses ◽  
Uri Gophna ◽  
Yossi Paitan ◽  
Roy R. Chaudhuri ◽  
Mark J. Pallen ◽  
...  

ABSTRACT The type III secretion system (T3SS) is an important virulence factor used by several gram-negative bacteria to deliver effector proteins which subvert host cellular processes. Enterohemorrhagic Escherichia coli O157 has a well-defined T3SS involved in attachment and effacement (ETT1) and critical for virulence. A gene cluster potentially encoding an additional T3SS (ETT2), which resembles the SPI-1 system in Salmonella enterica, was found in its genome sequence. The ETT2 gene cluster has since been found in many E. coli strains, but its in vivo role is not known. Many of the ETT2 gene clusters carry mutations and deletions, raising the possibility that they are not functional. Here we show the existence in septicemic E. coli strains of an ETT2 gene cluster, ETT2sepsis, which, although degenerate, contributes to pathogenesis. ETT2sepsis has several premature stop codons and a large (5 kb) deletion, which is conserved in 11 E. coli strains from cases of septicemia and newborn meningitis. A null mutant constructed to remove genes coding for the putative inner membrane ring of the secretion complex exhibited significantly reduced virulence. These results are the first demonstration of the importance of ETT2 for pathogenesis.


2005 ◽  
Vol 73 (7) ◽  
pp. 4327-4337 ◽  
Author(s):  
Kristen J. Kanack ◽  
J. Adam Crawford ◽  
Ichiro Tatsuno ◽  
Mohamed A. Karmali ◽  
James B. Kaper

ABSTRACT Enteropathogenic Escherichia coli (EPEC) is a major bacterial cause of infantile diarrhea in developing countries and is the prototype for a group of gastrointestinal pathogens causing characteristic attaching and effacing (A/E) histopathology on intestinal epithelia. A/E pathogens utilize a type III secretion system (TTSS), encoded by the locus of enterocyte effacement (LEE) pathogenicity island, to deliver effector proteins into host cells. Here, we investigate sequence divergence of the LEE-encoded SepZ protein and identify it as a TTSS-secreted and -translocated molecule. SepZ is hypervariable among A/E pathogens, with sequences sharing between 60 to 81% amino acid identity with SepZ of EPEC. A SepZ-CyaA fusion was secreted and translocated into HeLa cells in a TTSS-dependent manner. Additionally, we determined that the first 20 amino acids of SepZ were sufficient to direct its translocation. In contrast to previous studies suggesting a role in invasion and the structure and/or regulation of the TTSS, we found that SepZ does not mediate uptake of EPEC into host cells or affect translocation and tyrosine phosphorylation of the translocated intimin receptor. Immunohistochemistry reveals that, after an extended HeLa cell infection, accumulated SepZ can be detected beneath the site of bacterial attachment in a subset of pedestal regions. To indicate its newly identified status as a translocated effector protein, we propose to rename SepZ as EspZ.


2017 ◽  
Vol 85 (3) ◽  
Author(s):  
Regina A. Günster ◽  
Sophie A. Matthews ◽  
David W. Holden ◽  
Teresa L. M. Thurston

ABSTRACT Within host cells such as macrophages, Salmonella enterica translocates virulence (effector) proteins across its vacuolar membrane via the SPI-2 type III secretion system. Previously, it was shown that when expressed ectopically, the effectors SseK1 and SseK3 inhibit tumor necrosis factor alpha (TNF-α)-induced NF-κB activation. In this study, we show that ectopically expressed SseK1, SseK2, and SseK3 suppress TNF-α-induced, but not Toll-like receptor 4- or interleukin-induced, NF-κB activation. Inhibition required a DXD motif in SseK1 and SseK3, which is essential for the transfer of N-acetylglucosamine to arginine residues (arginine-GlcNAcylation). During macrophage infection, SseK1 and SseK3 inhibited NF-κB activity in an additive manner. SseK3-mediated inhibition of NF-κB activation did not require the only known host-binding partner of this effector, the E3-ubiquitin ligase TRIM32. SseK proteins also inhibited TNF-α-induced cell death during macrophage infection. Despite SseK1 and SseK3 inhibiting TNF-α-induced apoptosis upon ectopic expression in HeLa cells, the percentage of infected macrophages undergoing apoptosis was SseK independent. Instead, SseK proteins inhibited necroptotic cell death during macrophage infection. SseK1 and SseK3 caused GlcNAcylation of different proteins in infected macrophages, suggesting that these effectors have distinct substrate specificities. Indeed, SseK1 caused the GlcNAcylation of the death domain-containing proteins FADD and TRADD, whereas SseK3 expression resulted in weak GlcNAcylation of TRADD but not FADD. Additional, as-yet-unidentified substrates are likely to explain the additive phenotype of a Salmonella strain lacking both SseK1 and SseK3.


2013 ◽  
Vol 57 (5) ◽  
pp. 2191-2198 ◽  
Author(s):  
Jianfang Li ◽  
Chao Lv ◽  
Weiyang Sun ◽  
Zhenyu Li ◽  
Xiaowei Han ◽  
...  

ABSTRACTBacterial virulence factors have been increasingly regarded as attractive targets for development of novel antibacterial agents. Virulence inhibitors are less likely to generate bacterial resistance, which makes them superior to traditional antibiotics that target bacterial viability.Salmonella entericaserovar Typhimurium, an important food-borne human pathogen, has type III secretion system (T3SS) as its major virulence factor. T3SS secretes effector proteins to facilitate invasion into host cells. In this study, we identified several analogs of cytosporone B (Csn-B) that strongly block the secretion ofSalmonellapathogenicity island 1 (SPI-1)-associated effector proteins, without affecting the secretion of flagellar protein FliCin vitro. Csn-B and two other derivatives exhibited a strong inhibitory effect on SPI-1-mediated invasion to HeLa cells, while no significant toxicity to bacteria was observed. Nucleoid proteins Hha and H-NS bind to the promoters of SPI-1 regulator geneshilD,hilC, andrtsAto repress their expression and consequently regulate the expression of SPI-1 apparatus and effector genes. We found that Csn-B upregulated the transcription ofhhaandhns, implying that Csn-B probably affected the secretion of effectors through the Hha–H-NS regulatory pathway. In summary, this study presented an effective SPI-1 inhibitor, Csn-B, which may have potential in drug development against antibiotic-resistantSalmonella.


2020 ◽  
Vol 202 (21) ◽  
Author(s):  
Masataka Goto ◽  
Tomoko Hanawa ◽  
Akio Abe ◽  
Asaomi Kuwae

ABSTRACT Bordetella pertussis uses a type III secretion system (T3SS) to inject virulence proteins into host cells. Although the B. pertussis T3SS was presumed to be involved in host colonization, efficient secretion of type III secreted proteins from B. pertussis has not been observed. To investigate the roles of type III secreted proteins during infection, we attempted to optimize culture conditions for the production and secretion of a type III secreted protein, BteA, in B. pertussis. We observed that B. pertussis efficiently secretes BteA in ascorbic acid-depleted (AsA−) medium. When L2 cells, a rat lung epithelial cell line, were infected with B. pertussis cultured in the AsA− medium, BteA-dependent cytotoxicity was observed. We also performed an immunofluorescence assay of L2 cells infected with B. pertussis. Clear fluorescence signals of Bsp22, a needle structure of T3SS, were detected on the bacterial surface of B. pertussis cultured in the AsA− medium. Since ascorbic acid is known as a reducing agent, we cultured B. pertussis in liquid medium containing other reducing agents such as 2-mercaptoethanol and dithioerythritol. Under these reducing conditions, the production of type III secreted proteins was repressed. These results suggest that in B. pertussis, the production and secretion of type III secreted proteins are downregulated under reducing conditions. IMPORTANCE The type III secretion system (T3SS) of Bordetella pertussis forms a needlelike structure that protrudes from the bacterial cell surface. B. pertussis uses a T3SS to translocate virulence proteins called effectors into host cells. The culture conditions for effector production in B. pertussis have not been investigated. We attempted to optimize culture medium compositions for producing and secreting type III secreted proteins. We found that B. pertussis secretes type III secreted proteins in reducing agent-deprived liquid medium and that BteA-secreting B. pertussis provokes cytotoxicity against cultured mammalian cells. These results suggest that redox signaling is involved in the regulation of B. pertussis T3SS.


Sign in / Sign up

Export Citation Format

Share Document