scholarly journals Inflammation and Clearance of Chlamydia trachomatis in Enteric and Nonenteric Mucosae

2001 ◽  
Vol 69 (3) ◽  
pp. 1832-1840 ◽  
Author(s):  
Joseph U. Igietseme ◽  
John L. Portis ◽  
Linda L. Perry

ABSTRACT Immunization(s) fostering the induction of genital mucosa-targeted immune effectors is the goal of vaccines against sexually transmitted diseases. However, it is uncertain whether vaccine administration should be based on the current assumptions about the common mucosal immune system. We investigated the relationship between mucosal sites of infection, infection-induced inflammation, and immune-mediated bacterial clearance in mice using the epitheliotropic pathogenChlamydia trachomatis. Chlamydial infection of the conjunctival, pulmonary, or genital mucosae stimulated significant changes in tissue architecture with dramatic up-regulation of the vascular addressin, VCAM, a vigorous mixed-cell inflammatory response with an influx of α4β1+ T cells, and clearance of bacteria within 30 days. Conversely, intestinal mucosa infection was physiologically inapparent, with no change in expression of the local MAdCAM addressin, no VCAM induction, no histologically detectable inflammation, and no tissue pathology. Microbial clearance was complete within 60 days in the small intestine but bacterial titers remained at high levels for at least 8 months in the large intestine. These findings are compatible with the notion that VCAM plays a functional role in recruiting cells to inflammatory foci, and its absence from the intestinal mucosa contributes to immunologic homeostasis at that site. Also, expression of type 1 T cell-mediated immunity to intracellular Chlamydia may exhibit tissue-specific variation, with the rate and possibly the mechanism(s) of clearance differing between enteric and nonenteric mucosae. The implications of these data for the common mucosal immune system and the delivery of vaccines against mucosal pathogens are discussed.

2017 ◽  
Vol 29 (10) ◽  
pp. 471-478 ◽  
Author(s):  
Yasuhiro Date ◽  
Masashi Ebisawa ◽  
Shinji Fukuda ◽  
Hideaki Shima ◽  
Yuuki Obata ◽  
...  

2005 ◽  
Vol 3 (2) ◽  
pp. 63-73 ◽  
Author(s):  
C. G. Vinderola ◽  
J. Duarte ◽  
D. Thangavel ◽  
G. Perdigon ◽  
E. Farnworth ◽  
...  

Kefir is a fermented milk (drink) produced by the action of lactic acid bacteria, yeasts and acetic acid bacteria. We recently reported a comparative study on the effect of kefir containing viable or non-viable bacteria by studying their modulatory activity on the intestinal immune response. A functional dose was established in a murine model and the pattern of regulatory and pro-inflammatory cytokines induced was also studied. The existence of a common mucosal immune system implies that the immune cells stimulated in one mucosal tissue can spread and relocate through various mucosal sites. The aim of this work was to determine the effect of an oral administration of kefir on the duration of the intestinal mucosa immune response and the modulatory activity in distal mucosal sites, specifically in the peritoneal and pulmonary macrophages and in the bronchial tissue. BALB/c mice were fed with kefir or pasteurized kefir at doses previously determined as functional for intestinal mucosa immunomodulation. Kefir feeding was stopped and the number of IgA, IgG, IL-4, IL-6, IL-10, IIFNγ and TNFα producing cells was determined in the lamina propria of small intestine immediately, and after 2 and 7 days of kefir withdrawal. IgA producing cells were also measured in the bronchial tissue of lungs immediately and 2 and 7 days after kefir withdrawal. Phagocytic activity of peritoneal and pulmonary macrophages was also determined. The oral administration of kefir or pasteurized kefir increased the number of IgA+ cells not only in the gut lamina propria, but also in the bronchial tissue, supporting the concept of local antibody secretion after remote-site stimulation in the intestinal tract. Both peritoneal and pulmonary macrophages were activated by kefir or pasteurized kefir feeding. Peritoneal macrophages were stimulated faster than pulmonary macrophages (for kefir). The enhanced phagocytic activity achieved by kefir or pasteurized kefir lasted longer for the peritoneal than for the pulmonary macrophages. Due to the increased bronchial IgA and phagocytic activity of pulmonary macrophages after kefir feeding observed in this study, the oral administration of kefir could act as a natural adjuvant for enhancing the specific immune response against respiratory pathogens. The parameters studied returned to control values within a week of cessation of kefir administration. This would suggest that there is a low risk of overstimulating the gut mucosal immune system during periodic consumption of kefir.


2001 ◽  
Vol 8 (3) ◽  
pp. 540-544 ◽  
Author(s):  
Richard L. Gregory

ABSTRACT Streptococcus mutans is present in the saliva of most individuals and is modified by salivary components bound to the cells. These saliva-bound S. mutans are swallowed, exposed to high levels of acidity in the stomach, and presented to the common mucosal immune system. Much effort has been directed to identifying the specific S. mutans antigens that the mucosal immune responses are directed against. However, little is known about the host-altered antigenic determinants that the mucosal immune system recognizes. The immunogenicity of gastrically intubated untreatedS. mutans cells, cells coated with whole human saliva, cells treated with HCl (pH 2.0), and saliva-coated and acid-treated cells in mice was investigated. Saliva and serum samples were assayed by enzyme linked immunosorbent assay for immunoglobulin A (IgA) and IgG antibodies, respectively, against the untreated or treated S. mutans cells. In general, the levels of salivary IgA and serum IgG antibodies to the antigen against which the mice were immunized were significantly higher (P ≤ 0.05). In addition, human saliva and serum samples from 12 subjects were assayed for naturally occurring antibody against the untreated or treated S. mutans cells. In every case, significantly higher reactivity was directed against the saliva-coated and acid-treated cells followed by the saliva-coated S. mutans. These results provide evidence for the altered immunogenicity of swallowed S. mutans in humans by coating native S. mutans antigens with salivary components and/or denaturing surface S. mutans antigens in the acidic environment of the stomach, which would lead to an immune response to modified S. mutans determinants and not to native S. mutans antigens.


1989 ◽  
Vol 15 ◽  
pp. 30
Author(s):  
J Mestecky ◽  
W.H Kutteh ◽  
I Ladjeva ◽  
J.H Peterman

2019 ◽  
Vol 7 (21) ◽  
pp. 3530-3533
Author(s):  
Syarif Husin ◽  
Ardesy Melizah ◽  
Syifa Alkaff ◽  
Rachmat Hidayat

BACKGROUND: Bekasam is one of the traditional foods in South Sumatra, Indonesia, a mixture of fermented fish containing Lactic Acid Bacteria (LAB), Lactobacillus sp. Non-commensal bacteria and probiotics can induce intestinal mucosal immune responses. AIM: This pilot study aimed to see the efficacy of Lactobacillus sp. to the immune response of the intestinal mucosa by assessing the levels of IgA in the intestinal fluid and markers of T cell populations, such as CD4 and CD8 in the intestinal mucosa. METHODS: This study was an in vivo experimental study. As many as 30 rats were grouped into 3 treatment groups (doses 107, 108, and 109 CFU/rat/day, for 7 days) and 2 groups of controls (negative control, 10% non-fat milk, and positive control, Lactobacillus casei 108 CFU/rat/day for 7 days). At the end of the treatment, the intestinal mucosa was taken to examine the levels of IgA, CD4 and CD8 using the Enzyme-Linked Immunosorbent Assay (ELISA) method, according to the manuals of each ELISA kit. All displays of research data were presented with means ± SD. T-test was used to assess the significance of differences. RESULTS: Secretion of Ig A increased with the addition of Lactobacillus sp. from bekasam. Administration of Lactobacillus sp. yielded no effect on helper T cell level (CD4 markers), as well as on cytotoxic T cell levels (CD8 markers). CONCLUSION: Lactobacillus sp. probiotic from bekasam improved the intestinal mucosal immune system by increasing the production of Ig A, but exhibited no effect on T lymphocyte cells.  by increasing the production of Ig A, but exhibited no effect on T lymphocyte cells.


1993 ◽  
Vol 265 (4) ◽  
pp. G599-G610 ◽  
Author(s):  
G. A. Castro ◽  
C. J. Arntzen

This review highlights work that, within the past decade, transformed mucosal immunophysiology from a hypothetical concept to a fully recognized interdiscipline. The regulation of epithelial and smooth muscle functions by the mucosal immune system represents an exquisitely sensitive adaptation to local antigenic challenge. Furthermore, immunologic cells communicate with nerves via paracrine secretions to rapidly transduce antigenic signals into panmucosal changes in function. These local immunocyte-nerve interactions are modulated by the autonomic and central nervous systems. Because of the common mucosal immune system, antigen-induced changes similar to those occurring in the intestine and colon are predicted to occur in mucosa of all hollow organs. The drawing together of fields as diverse as medicine and agriculture underscores the scope of areas encompassed by immunophysiology. Newly acquired knowledge has positioned the field to advance rapidly in both basic and applied directions. Forces that will remodel the field in the next decade will be derived from public concerns about human health maintenance and the explosive and novel use of new research tools stemming from molecular biology. These forces will draw on and advance our knowledge in areas as diverse as vaccine development and prevention of allergic reactions to foods, bioengineered foods in particular.


Sign in / Sign up

Export Citation Format

Share Document