scholarly journals Diepitopic Construct of Functionally and Epitopically Complementary Peptides Enhances Immunogenicity, Reactivity with Glucosyltransferase, and Protection from Dental Caries

2001 ◽  
Vol 69 (7) ◽  
pp. 4210-4216 ◽  
Author(s):  
Martin A. Taubman ◽  
Cynthia J. Holmberg ◽  
Daniel J. Smith

ABSTRACT Coimmunization with peptide constructs from catalytic (CAT) and glucan-binding (GLU) domains of glucosyltransferase (GTF) of mutans streptococci has resulted in enhanced levels of antibody to the CAT construct and to GTF. We designed and synthesized a diepitopic construct (CAT-GLU) containing two copies of both CAT (B epitope only) and GLU (B and T epitope) peptides. The immunogenicity of this diepitopic construct was compared with that of individual CAT and GLU constructs by immunizing groups of Sprague-Dawley rats subcutaneously in the salivary gland vicinity with the CAT-GLU, CAT, or GLU construct or by treating rats by sham immunization. Levels of serum immunoglobulin G (IgG) antibody to GTF or CAT in the CAT-GLU group were significantly greater than in GLU- or CAT-immunized groups. Immunization with CAT-GLU was compared to coimmunization with a mixture of CAT and GLU in a second rodent experiment under a similar protocol. CAT-GLU immunization resulted in serum IgG and salivary IgA responses to GTF and CAT which were greater than after coimmunization. Immunization with the diepitopic construct and communization with CAT and GLU constructs showed proliferation of T lymphocytes to GTF. Immunization with either the CAT or GLU construct has been shown to elicit significant protection in a rodent dental caries model. Similarly in this study, the enhanced response to GTF after immunization with the CAT-GLU construct resulted in protective effects on dental caries. Therefore, the CAT-GLU diepitopic construct can be a potentially important antigen for a caries vaccine, giving rise to greater immune response than after immunization with CAT, GLU, or a mixture of the two.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Catherine Crinigan ◽  
Matthew Calhoun ◽  
Karen L. Sweazea

Chronic high fat feeding is correlated with diabetes and kidney disease. However, the impact of short-term high fat diets (HFD) is not well-understood. Six weeks of HFD result in indices of metabolic syndrome (increased adiposity, hyperglycemia, hyperinsulinemia, hyperlipidemia, hyperleptinemia, and impaired endothelium-dependent vasodilation) compared to rats fed on standard chow. The hypothesis was that short-term HFD would induce early signs of renal disease. Young male Sprague-Dawley rats were fed either HFD (60% fat) or standard chow (5% fat) for six weeks. Morphology was determined by measuring changes in renal mass and microstructure. Kidney function was measured by analyzing urinary protein, creatinine, and hydrogen peroxide (H2O2) concentrations, as well as plasma cystatin C concentrations. Renal damage was measured through assessment of urinary oxDNA/RNA concentrations as well as renal lipid peroxidation, tumor necrosis factor alpha (TNFα), and interleukin 6 (IL-6). Despite HFD significantly increasing adiposity and renal mass, there was no evidence of early stage kidney disease as measured by changes in urinary and plasma biomarkers as well as histology. These findings suggest that moderate hyperglycemia and inflammation produced by short-term HFD are not sufficient to damage kidneys or that the ketogenic HFD may have protective effects within the kidneys.


2001 ◽  
Vol 91 (4) ◽  
pp. 1828-1835 ◽  
Author(s):  
Nicole Stupka ◽  
Peter M. Tiidus

The effects of estrogen and ovariectomy on indexes of muscle damage after 2 h of complete hindlimb ischemia and 2 h of reperfusion were investigated in female Sprague-Dawley rats. The rats were assigned to one of three experimental groups: ovariectomized with a 17β-estradiol pellet implant (OE), ovariectomized with a placebo pellet implant (OP), or control with intact ovaries (R). It was hypothesized that following ischemia-reperfusion (I/R), muscle damage indexes [serum creatine kinase (CK) activity, calpain-like activity, inflammatory cell infiltration, and markers of lipid peroxidation (thiobarbituric-reactive substances)] would be lower in the OE and R rats compared with the OP rats due to the protective effects of estrogen. Serum CK activity following I/R was greater ( P < 0.01) in the R rats vs. OP rats and similar in the OP and OE rats. Calpain-like activity was greatest in the R rats ( P < 0.01) and similar in the OP and OE rats. Neutrophil infiltration was assessed using the myeloperoxidase (MPO) assay and immunohistochemical staining for CD43-positive (CD43+) cells. MPO activity was lower ( P < 0.05) in the OE rats compared with any other group and similar in the OP and R rats. The number of CD43+ cells was greater ( P < 0.01) in the OP rats compared with the OE and R rats and similar in the OE and R rats. The OE rats had lower ( P < 0.05) thiobarbituric-reactive substance content following I/R compared with the R and OP rats. Indexes of muscle damage were consistently attenuated in the OE rats but not in the R rats. A 10-fold difference in serum estrogen content may mediate this. Surprisingly, serum CK activity and muscle calpain-like activity were lower ( P< 0.05) in the OP rats compared with the R rats. Increases in serum insulin-like growth factor-1 content ( P < 0.05) due to ovariectomy were hypothesized to account for this finding. Thus both ovariectomy and estrogen supplementation have differential effects on indexes of I/R muscle damage.


2018 ◽  
Vol 9 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Jing Shi ◽  
Guofeng Wu ◽  
Xiaohua Zou ◽  
Ke Jiang

Background/Aims: Cardiac surgery-associated acute kidney injury (CSA-AKI) is one of the most common postoperative complications in intensive care medicine. Baicalin has been shown to have anti-inflammatory and antioxidant roles in various disorders. We aimed to test the protective effects of baicalin on CSA-AKI using a rat model. Methods: Sprague-Dawley rats underwent 75 min of cardiopulmonary bypass (CPB) with 45 min of cardioplegic arrest (CA) to establish the AKI model. Baicalin was administered at different doses intragastrically 1 h before CPB. The control and treated rats were subjected to the evaluation of different kidney injury index and inflammation biomarkers. Results: Baicalin significantly attenuated CPB/CA-induced AKI in rats, as evidenced by the lower levels of serum creatinine, serum NGAL, and Kim1. Baicalin remarkably inhibited oxidative stress, reflected in the decreased malondialdehyde and myeloperoxidase activity, and enhanced superoxide dismutase activity and glutathione in renal tissue. Baicalin suppressed the expression of IL-18 and iNOS, and activated the Nrf2/HO-1 pathway. Conclusion: Our data indicated that baicalin mediated CPB/CA-induced AKI by decreasing the oxidative stress and inflammation in the renal tissues, and that baicalin possesses the potential to be developed as a therapeutic tool in clinical use for CSA-AKI.


2012 ◽  
Vol 63 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Xiu-Quan Shi ◽  
Wei Yan ◽  
Ke-Yue Wang ◽  
Qi-Yuan Fan ◽  
Yan Zou

We tested the hypothesis that dietary fi bre (DF) has protective effects against manganese (Mn)-induced neurotoxicity. Forty-eight one-month old Sprague-Dawley rats were randomly divided into six groups: control, 16 % DF, Mn (50 mg kg-1 body weight), Mn+ 4 % DF, Mn+ 8 % DF, and Mn+ 16 % DF. After oral administration of Mn (as MnCl2) by intragastric tube during one month, we determined Mn concentrations in the blood, liver, cerebral cortex, and stool and tested neurobehavioral functions. Administration of Mn was associated with increased Mn concentration in the blood, liver, and cerebral cortex and increased Mn excretion in the stool. Aberrations in neurobehavioral performance included increases in escape latency and number of errors and decrease in step-down latency. Irrespective of the applied dose, the addition of DF in forage decreased tissue Mn concentrations and increased Mn excretion rate in the stool by 20 % to 35 %. All neurobehavioral aberrations were also improved. Our fi ndings show that oral exposure to Mn may cause neurobehavioral abnormalities in adult rats that could be effi ciently alleviated by concomitant supplementation of DF in animal feed.


2020 ◽  
Vol 23 (4) ◽  
pp. 570-579
Author(s):  
Mahboubeh Sheikhan ◽  
◽  
Mohammad Reza Kordi ◽  
Hamid Rajabi ◽  
◽  
...  

Background and Aim: Several microRNAs are involved in regulating muscle mass, which plays an essential role in hypertrophy and atrophy of skeletal muscle, The present study examined the expression of some genes as regulators of muscular atrophy following a period of inertia in rats. Methods & Materials: For this purpose, 18 male Sprague-Dawley rats were divided into three groups (Control, Exercise+inactivity, and Inactivity). The exercise+inactivity group run on the treadmill for 18 weeks and five times per week. The hindlimb of the animal was immobilized for seven days with the casting method. Soleus muscle was extracted and the expression of the genes was measured by the RT-PCR method. Univariate ANOVA and Tukey post hoc test was used to determine the differences (α=0.05). Ethical Considerations: The Ethics Committee of the Tehran University of Medical Sciences Research approved this study (Code: IR.SUMS.REC.1396.S 463). Results: Results showed that immobilization in both Exercise+ inactivity and inactivity groups, compare to the control group, increased expression of miR-1 genes (P<0.10), FOXO3a (P<0.001) and decreased expression of miR-206 (P<0.007) and IGF-1 (P<0.001). This difference was statistically significant. Conclusion: According to the results of this study, it can be said that changes in the expression of RNAs by chromatography cause changes in the expression of muscle regulating genes, and although endurance exercises have protective effects, they cannot prevent these changes.


2019 ◽  
Vol 51 (8) ◽  
pp. 2838-2841
Author(s):  
Won Seo Park ◽  
Min Su Park ◽  
Sang Wook Kang ◽  
Seul A. Jin ◽  
Youngchul Jeon ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Qiqi Zhu ◽  
Haobo Li ◽  
Xiang Xie ◽  
Xiaozhen Chen ◽  
Ramoji Kosuru ◽  
...  

Myocardial ischemic postconditioning- (IPo-) mediated cardioprotection against myocardial ischemia-reperfusion (IR) injury needs the activation of signal transducer and activator of transcription 3 (STAT3), which involves adiponectin (APN). APN confers its biological effects through AMP-activated protein kinase- (AMPK-) dependent and AMPK-independent pathways. However, the role of AMPK in APN-mediated STAT3 activation in IPo cardioprotection is unknown. We hypothesized that APN-mediated STAT3 activation in IPo is AMPK-independent and that APN through AMPK-dependent STAT3 activation facilitates IPo cardioprotection. Here, Sprague-Dawley rats were subjected to myocardial IR without or with IPo and/or APN. APN or IPo significantly improved postischemic cardiac function and reduced myocardial injury and oxidative stress, and their combination further attenuated postischemic myocardial injuries. APN or its combination with IPo but not IPo alone significantly increased AMPK activation and both nuclear and mitochondrial STAT3 activation, while IPo significantly enhanced mitochondrial but not nuclear STAT3 activation. In primarily isolated cardiomyocytes, recombined globular APN (gAd), hypoxic postconditioning (HPo), or their combination significantly attenuated hypoxia/reoxygenation-induced cell injury and increased nuclear and/or mitochondrial STAT3 activation. STAT3 inhibition had no impact on gAd or gAd in combination with HPo-induced AMPK activation but abolished their cellular protective effects. AMPK inhibition did not affect HPo cardioprotection but abolished gAd cardioprotection and disabled gAd to facilitate/enhance HPo cardioprotection and STAT3 activation. These results suggest that APN confers cardioprotection through AMPK-dependent and AMPK-independent STAT3 activation, while IPo confers cardioprotection through AMPK-independent mitochondrial STAT3 activation. Joint use of APN and IPo synergistically attenuated myocardial IR injury by activating STAT3 via distinct signaling pathways.


2016 ◽  
Vol 7 (3) ◽  
pp. 409-420 ◽  
Author(s):  
T.M. Marques ◽  
E. Patterson ◽  
R. Wall ◽  
O. O’Sullivan ◽  
G.F. Fitzgerald ◽  
...  

The aim of this study was to investigate if dietary administration of γ-aminobutyric acid (GABA)-producing Lactobacillus brevis DPC 6108 and pure GABA exert protective effects against the development of diabetes in streptozotocin (STZ)-induced diabetic Sprague Dawley rats. In a first experiment, healthy rats were divided in 3 groups (n=10/group) receiving placebo, 2.6 mg/kg body weight (bw) pure GABA or L. brevis DPC 6108 (~109microorganisms). In a second experiment, rats (n=15/group) were randomised to five groups and four of these received an injection of STZ to induce type 1 diabetes. Diabetic and non-diabetic controls received placebo [4% (w/v) yeast extract in dH2O], while the other three diabetic groups received one of the following dietary supplements: 2.6 mg/kg bw GABA (low GABA), 200 mg/kg bw GABA (high GABA) or ~109 L. brevis DPC 6108. L. brevis DPC 6108 supplementation was associated with increased serum insulin levels (P<0.05), but did not alter other metabolic markers in healthy rats. Diabetes induced by STZ injection decreased body weight (P<0.05), increased intestinal length (P<0.05) and stimulated water and food intake. Insulin was decreased (P<0.05), whereas glucose was increased (P<0.001) in all diabetic groups, compared with non-diabetic controls. A decrease (P<0.01) in glucose levels was observed in diabetic rats receiving L. brevis DPC 6108, compared with diabetic-controls. Both the composition and diversity of the intestinal microbiota were affected by diabetes. Microbial diversity in diabetic rats supplemented with low GABA was not reduced (P>0.05), compared with non-diabetic controls while all other diabetic groups displayed reduced diversity (P<0.05). L. brevis DPC 6108 attenuated hyperglycaemia induced by diabetes but additional studies are needed to understand the mechanisms involved in this reduction.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaofang Yu ◽  
Xinjin Chi ◽  
Shan Wu ◽  
Yi Jin ◽  
Hui Yao ◽  
...  

This paper aims to explore whether pretreatment with dexmedetomidine (Dex) has antioxidative and renal protective effects during orthotopic autologous liver transplantation (OALT) and its impact on nuclear factor erythroid 2-related factor 2 (Nrf2) activation. Sprague-Dawley rats were randomized into groups that include sham-operated (group S), model (group M), low dose Dex (group D1), high dose Dex (group D2), atipamezole (a nonspecificα2receptor blocker) + high dose Dex (group B1), ARC239 (a specificα2B/creceptor blocker) + high dose Dex (group B2), and BRL-44408 (a specificα2Areceptor blocker) + high dose Dex (group B3). Then histopathologic examination of the kidneys and measurement of renal function, the renal Nrf2 protein expression, and oxidants and antioxidants were performed 8 hours after OALT. We found that pretreatment with Dex activated Nrf2 in glomerular cells and upregulated antioxidants but reduced oxidants (allP<0.01, group D2 versus group M). Atipamezole and BRL-44408, but not ARC239, reversed these protective effects. In conclusion, pretreatment with Dex activates Nrf2 throughα2Areceptor, increases the antioxidant levels, and attenuates renal injury during OALT.


1988 ◽  
Vol 67 (10) ◽  
pp. 1316-1318 ◽  
Author(s):  
W.H. Bowen ◽  
K.M. Madison ◽  
S.K. Pearson

The evidence that dental caries is an infectious and transmitted disease in rodents is unequivocal. However, the factors controlling the transmission of micro-organisms from one animal to another have not been extensively explored. Results from previous studies in our laboratory showed that desalivated animals became infected by Streptococcus sobrinus in a shorter period of time than did intact animals. Furthermore, an additional study in our laboratory showed that animals with intact salivary function caged with desalivated animals harbored more S. sobrinus immediately following establishment of infection than did intact animals housed with other intact animals. Therefore, it seemed appropriate to determine the influence on caries development of caging a desalivated animal with an intact animal. In this study, intact Sprague-Dawley rats were caged with desalivated animals; additional groups of intact animals were housed with chlorhexidine-treated animals that were either intact or desalivated. Although chlorhexidine suppressed both caries development and the level of infection by S. sobrinus, nevertheless, intact animals caged with desalivated animals invariably developed more caries than did intact animals housed with other intact animals. Treating intact animals with chlorhexidine did not affect caries scores in untreated intact cagemates. Overall, the results suggest that a highly acidogenic flora with enhanced virulence (including S. sobrinus) is selected in the desalivated animals; this flora is apparently readily transmitted to intact cagemates, leading to enhanced levels of smooth-surface caries.


Sign in / Sign up

Export Citation Format

Share Document