scholarly journals The Mycobacterium tuberculosis 19-Kilodalton Lipoprotein Inhibits Gamma Interferon-Regulated HLA-DR and FcγR1 on Human Macrophages through Toll-Like Receptor 2

2003 ◽  
Vol 71 (8) ◽  
pp. 4487-4497 ◽  
Author(s):  
Adam J. Gehring ◽  
Roxana E. Rojas ◽  
David H. Canaday ◽  
David L. Lakey ◽  
Clifford V. Harding ◽  
...  

ABSTRACT Mycobacterium tuberculosis survives in macrophages in the face of acquired CD4+ T-cell immunity, which controls but does not eliminate the organism. Gamma interferon (IFN-γ) has a central role in host defenses against M. tuberculosis by activating macrophages and regulating major histocompatibility complex class II (MHC-II) antigen (Ag) processing. M. tuberculosis interferes with IFN-γ receptor (IFN-γR) signaling in macrophages, but the molecules responsible for this inhibition are poorly defined. This study determined that the 19-kDa lipoprotein from M. tuberculosis inhibits IFN-γ-regulated HLA-DR protein and mRNA expression in human macrophages. Inhibition of HLA-DR expression was associated with decreased processing and presentation of soluble protein Ags and M. tuberculosis bacilli to MHC-II-restricted T cells. Inhibition of HLA-DR required prolonged exposure to 19-kDa lipoprotein and was blocked with a monoclonal antibody specific for Toll-like receptor 2 (TLR-2). The 19-kDa lipoprotein also inhibited IFN-γ-induced expression of FcγRI. Thus, M. tuberculosis, through 19-kDa lipoprotein activation of TLR-2, inhibits IFN-γR signaling in human macrophages, resulting in decreased MHC-II Ag processing and recognition by MHC-II-restricted CD4 T cells. These findings provide a mechanism for M. tuberculosis persistence in macrophages.

2015 ◽  
Vol 83 (6) ◽  
pp. 2242-2254 ◽  
Author(s):  
Edward T. Richardson ◽  
Supriya Shukla ◽  
David R. Sweet ◽  
Pamela A. Wearsch ◽  
Philip N. Tsichlis ◽  
...  

Mycobacterium tuberculosissurvives within macrophages and employs immune evasion mechanisms to persist in the host. Protective T helper type 1 (Th1) responses are induced, and the immune response in most individuals is sufficient to restrictM. tuberculosisto latent infection, but most infections are not completely resolved. As T cells and macrophages respond, a balance is established between protective Th1-associated and other proinflammatory cytokines, such as interleukin-12 (IL-12), interferon gamma (IFN-γ), and tumor necrosis factor alpha, and anti-inflammatory cytokines, such as IL-10. The mechanisms by whichM. tuberculosismodulates host responses to promote its survival remain unclear. In these studies, we demonstrate thatM. tuberculosisinduction of IL-10, suppression of IL-12, and inhibition of class II major histocompatibility complex (MHC-II) molecules in infected macrophages are all driven by Toll-like receptor 2 (TLR2)-dependent activation of the extracellular signal-regulated kinases (ERK). Elimination of ERK signaling downstream of TLR2 by pharmacologic inhibition with U0126 or genetic deletion ofTpl2blocks IL-10 secretion and enhances IL-12 p70 secretion. We demonstrate thatM. tuberculosisregulation of these pathways in macrophages affects T cell responses to infected macrophages. Thus, genetic blockade of the ERK pathway inTpl2−/−macrophages enhances Th1 polarization and IFN-γ production by antigen-specific CD4+T cells responding toM. tuberculosisinfection. These data indicate thatM. tuberculosisand its potent TLR2 ligands activate ERK signaling in macrophages to promote anti-inflammatory macrophage responses and blunt Th1 responses against the pathogen.


2005 ◽  
Vol 73 (9) ◽  
pp. 5782-5788 ◽  
Author(s):  
Kyle I. Happel ◽  
Euan A. Lockhart ◽  
Carol M. Mason ◽  
Elizabeth Porretta ◽  
Elizabeth Keoshkerian ◽  
...  

ABSTRACT Interleukin-23 (IL-23) is a heterodimeric cytokine that shares IL-12 p40 but contains a unique p19 subunit similar to IL-12 p35. Previous studies indicate a greater importance for intact IL-12/23 p40 expression than IL-12 p35 for immunity against Mycobacterium tuberculosis, suggesting a role for IL-23 in host defense. The effects of IL-23 on the outcome of pulmonary infection with M. tuberculosis have not been described. Here, we show that local delivery of replication-defective adenovirus vectors encoding IL-23 (AdIL-23) greatly stimulated expression of both gamma interferon (IFN-γ) and IL-17 in lung tissues of otherwise normal mice. When given 72 h prior to infection with M. tuberculosis, AdIL-23 significantly reduced the bacterial burden at 14, 21, and 28 days. Markedly lower levels of lung inflammation were observed at 28 days than in control mice pretreated with control adenovirus (AdNull) or vehicle controls. AdIL-23 pretreatment resulted in increased numbers of CD4+ CD25+ activated T cells in lungs and draining lymph nodes compared to control groups and more CD4+ T cells bearing surface memory markers in lung lymph nodes. IL-23 gene delivery also significantly enhanced host anti-mycobacterial T-cell responses, as shown by elevated levels of IFN-γ and IL-17 secreted in vitro following restimulation with M. tuberculosis purified protein derivative. Overall, our data show that transient IL-23 gene delivery in the lung is well tolerated, and they provide the initial demonstration that this factor controls mycobacterial growth while augmenting early pulmonary T-cell immunity.


2004 ◽  
Vol 72 (11) ◽  
pp. 6603-6614 ◽  
Author(s):  
Rish K. Pai ◽  
Meghan E. Pennini ◽  
Aaron A. R. Tobian ◽  
David H. Canaday ◽  
W. Henry Boom ◽  
...  

ABSTRACT Infection of macrophages with Mycobacterium tuberculosis or exposure to M. tuberculosis 19-kDa lipoprotein for >16 h inhibits gamma interferon (IFN-γ)-induced major histocompatibility complex class II (MHC-II) expression by a mechanism involving Toll-like receptors (TLRs). M. tuberculosis was found to inhibit murine macrophage MHC-II antigen (Ag) processing activity induced by IFN-γ but not by interleukin-4 (IL-4), suggesting inhibition of IFN-γ-induced gene regulation. We designed an approach to test the ability of M. tuberculosis-infected cells to respond to IFN-γ. To model chronic infection with M. tuberculosis with accompanying prolonged TLR signaling, macrophages were infected with M. tuberculosis or incubated with M. tuberculosis 19-kDa lipoprotein for 24 h prior to the addition of IFN-γ. Microarray gene expression studies were then used to determine whether prolonged TLR signaling by M. tuberculosis broadly inhibits IFN-γ regulation of macrophage gene expression. Of 347 IFN-γ-induced genes, M. tuberculosis and 19-kDa lipoprotein inhibited induction of 42 and 36%, respectively. Key genes or gene products were also examined by quantitative reverse transcription-PCR and flow cytometry, confirming and extending the results obtained by microarray studies. M. tuberculosis inhibited IFN-γ induction of genes involved in MHC-II Ag processing, Ag presentation, and recruitment of T cells. These effects were largely dependent on myeloid differentiation factor 88, implying a role for TLRs. Thus, prolonged TLR signaling by M. tuberculosis inhibits certain macrophage responses to IFN-γ, particularly those related to MHC-II Ag presentation. This inhibition may promote M. tuberculosis evasion of T-cell responses and persistence of infection in tuberculosis.


2007 ◽  
Vol 75 (12) ◽  
pp. 5845-5858 ◽  
Author(s):  
Javier Ochoa-Repáraz ◽  
Jami Sentissi ◽  
Theresa Trunkle ◽  
Carol Riccardi ◽  
David W. Pascual

ABSTRACT Coxiella burnetii is a highly infectious obligate intracellular bacterium. The phase I form is responsible for Q fever, a febrile illness with flu-like symptoms that often goes undiagnosed. The attenuated C. burnetii phase II (having a truncated “O” chain of its lipopolysaccharide) does not cause disease in immunocompetent animals; however, phase II organisms remain infectious, and we questioned whether disease could be produced in immunodeficient mice. To study C. burnetii phase II infections, febrile responses in gamma interferon knockout (IFN-γ−/−), BALB/c, Toll-like receptor 2 knockout (TLR2−/−), and C57BL/6 mice were measured using the Nine Mile phase II (NMII) strain of C. burnetii. Immunocompetent mice showed minimal febrile responses, unlike those obtained with IFN-γ−/− and TLR2−/− mice, which showed elevated rectal temperatures that were sustained for ∼15 days with transient increases in splenic weights. Reinfection of IFN-γ−/− and TLR2−/− mice with C. burnetii NMII 30 days after primary infection protected mice as evident by reduced febrile responses and a lack of splenic inflammation. Although minimal detection of Coxiella in TLR2−/− mouse spleens was observed, greater colonization was evident in the IFN-γ−/− mice. Cytokine analysis was performed on infected peritoneal macrophages isolated from these mice, and immunocompetent macrophages showed robust tumor necrosis factor alpha, IFN-γ, and granulocyte-macrophage colony-stimulating factor (GM-CSF) but no interleukin-12 (IL-12) responses. IFN-γ−/− macrophages produced elevated levels of IL-6, IL-10, and IL-12, while TLR2−/− macrophages produced GM-CSF, IL-12, and minimal IL-10. To distinguish immunity conferred by innate or adaptive systems, adoptive transfer studies were performed and showed that immune lymphocytes obtained from immunocompetent mice protected against a subsequent challenge with NMII, indicating that adaptive immunity mediates the observed protection. Thus, our data show that NMII is capable of eliciting disease in immunocompromised mice, which may help in evaluation of vaccine candidates as well as the study of host-pathogen interactions.


2002 ◽  
Vol 70 (3) ◽  
pp. 1272-1278 ◽  
Author(s):  
Riyoko Tamai ◽  
Tetsuya Sakuta ◽  
Kenji Matsushita ◽  
Mitsuo Torii ◽  
Osamu Takeuchi ◽  
...  

ABSTRACT Gamma interferon (IFN-γ)-primed human gingival fibroblasts (HGF) have been shown to produce higher levels of interleukin-8 (IL-8) upon stimulation with bacterial products and inflammatory cytokines than nonprimed controls. In this study, we examined whether priming of HGF with IFN-γ up-regulates IL-8 production by the cells in response to purified lipopolysaccharide (LPS). The priming effect of IFN-γ was clearly observed in the high-CD14-expressing (CD14high) HGF but not in the low-CD14-expressing (CD14low) HGF. The CD14high HGF were most effectively primed with IFN-γ (1,000 IU/ml) for 72 h. To elucidate the mechanism of the priming effects of IFN-γ for the LPS response by HGF, we examined whether IFN-γ regulated expression of CD14, Toll-like receptor 2 (TLR2), TLR4, MD-2, and MyD88, all of which are molecules suggested to be associated with LPS signaling. In CD14high HGF, IFN-γ markedly up-regulated CD14 and MyD88 but not TLR4 protein and MD-2 mRNA expression, while in CD14low HGF, IFN-γ slightly increased MyD88 and scarcely affected CD14, TLR4 protein, and MD-2 mRNA levels. LPS-induced IL-8 production by IFN-γ-primed CD14high HGF was significantly inhibited by monoclonal antibodies (MAbs) against CD14 and TLR4, but not by an anti-TLR2 MAb. These findings suggested that IFN-γ primed CD14high HGF to enhance production of IL-8 in response to LPS through augmentation of the CD14-TLR system, where the presence of membrane CD14 was indispensable for the response of HGF to LPS.


2010 ◽  
Vol 78 (10) ◽  
pp. 4187-4194 ◽  
Author(s):  
Teresa M. Wozniak ◽  
Bernadette M. Saunders ◽  
Anthony A. Ryan ◽  
Warwick J. Britton

ABSTRACT Protective immunity against tuberculosis (TB) requires the integrated response of a network of lymphocytes. Both gamma interferon (IFN-γ)- and interleukin 17 (IL-17)-secreting CD4+ T cells have been identified in subjects with latent TB infection and during experimental Mycobacterium tuberculosis infection, but the contribution of Th17 cells to protective immunity is unclear. To examine their protective effects in vivo, we transferred mycobacterium-specific IL-17- and IFN-γ-secreting CD4+ T cells isolated from M. tuberculosis BCG-immunized IL-12p40−/− and IFN-γ−/− or wild-type mice, respectively, into M. tuberculosis-infected IL-12p40−/− or RAG−/− mice. In the absence of IL-12 and IL-23, neither IL-17-secreting (Th17) nor IFN-γ-secreting (Th1) BCG-specific T cells expanded or provided protection against M. tuberculosis. In RAG−/− recipients with an intact IL-12/IL-23 axis, both Th17 and Th1 cells were activated and induced significant protection against M. tuberculosis. The reduction in the bacterial load following transfer of IFN-γ−/− Th17 cells was associated with significant prolongation of survival compared to recipients of naïve IFN-γ−/− T cells. This effect was at the cost of an increased inflammatory infiltrate characterized by an excess of neutrophils. Therefore, Th17 cells can provide IFN-γ-independent protection against M. tuberculosis, and this effect may contribute to the early control of M. tuberculosis infection.


2007 ◽  
Vol 76 (1) ◽  
pp. 250-262 ◽  
Author(s):  
Paula Barrionuevo ◽  
Juliana Cassataro ◽  
M. Victoria Delpino ◽  
Astrid Zwerdling ◽  
Karina A. Pasquevich ◽  
...  

ABSTRACT The strategies that allow Brucella abortus to survive inside macrophages for prolonged periods and to avoid the immunological surveillance of major histocompatibility complex class II (MHC-II)-restricted gamma interferon (IFN-γ)-producing CD4+ T lymphocytes are poorly understood. We report here that infection of THP-1 cells with B. abortus inhibited expression of MHC-II molecules and antigen (Ag) processing. Heat-killed B. abortus (HKBA) also induced both these phenomena, indicating the independence of bacterial viability and involvement of a structural component of the bacterium. Accordingly, outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, inhibited both MHC-II expression and Ag processing to the same extent as HKBA. Moreover, a synthetic lipohexapeptide that mimics the structure of the protein lipid moiety also inhibited MHC-II expression, indicating that any Brucella lipoprotein could down-modulate MHC-II expression and Ag processing. Inhibition of MHC-II expression and Ag processing by either HKBA or lipidated Omp19 (L-Omp19) depended on Toll-like receptor 2 and was mediated by interleukin-6. HKBA or L-Omp19 also inhibited MHC-II expression and Ag processing of human monocytes. In addition, exposure to the synthetic lipohexapeptide inhibited Ag-specific T-cell proliferation and IFN-γ production of peripheral blood mononuclear cells from Brucella-infected patients. Together, these results indicate that there is a mechanism by which B. abortus may prevent recognition by T cells to evade host immunity and establish a chronic infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Luo ◽  
Ying Xue ◽  
Liyan Mao ◽  
Qun Lin ◽  
Guoxing Tang ◽  
...  

BackgroundRapid and effective discrimination between active tuberculosis (ATB) and latent tuberculosis infection (LTBI) remains a challenge. There is an urgent need for developing practical and affordable approaches targeting this issue.MethodsParticipants with ATB and LTBI were recruited at Tongji Hospital (Qiaokou cohort) and Sino-French New City Hospital (Caidian cohort) based on positive T-SPOT results from June 2020 to January 2021. The expression of activation markers including HLA-DR, CD38, CD69, and CD25 was examined on Mycobacterium tuberculosis (MTB)-specific CD4+ T cells defined by IFN-γ, TNF-α, and IL-2 expression upon MTB antigen stimulation.ResultsA total of 90 (40 ATB and 50 LTBI) and another 64 (29 ATB and 35 LTBI) subjects were recruited from the Qiaokou cohort and Caidian cohort, respectively. The expression patterns of Th1 cytokines including IFN-γ, TNF-α, and IL-2 upon MTB antigen stimulation could not differentiate ATB patients from LTBI individuals well. However, both HLA-DR and CD38 on MTB-specific cells showed discriminatory value in distinguishing between ATB patients and LTBI individuals. As for developing a single candidate biomarker, HLA-DR had the advantage over CD38. Moreover, HLA-DR on TNF-α+ or IL-2+ cells had superiority over that on IFN-γ+ cells in differentiating ATB patients from LTBI individuals. Besides, HLA-DR on MTB-specific cells defined by multiple cytokine co-expression had a higher ability to discriminate patients with ATB from LTBI individuals than that of MTB-specific cells defined by one kind of cytokine expression. Specially, HLA-DR on TNF-α+IL-2+ cells produced an AUC of 0.901 (95% CI, 0.833–0.969), with a sensitivity of 93.75% (95% CI, 79.85–98.27%) and specificity of 72.97% (95% CI, 57.02–84.60%) as a threshold of 44% was used. Furthermore, the performance of HLA-DR on TNF-α+IL-2+ cells for differential diagnosis was obtained with validation cohort data: 90.91% (95% CI, 72.19–97.47%) sensitivity and 68.97% (95% CI, 50.77–82.73%) specificity.ConclusionsWe demonstrated that HLA-DR on MTB-specific cells was a potentially useful biomarker for accurate discrimination between ATB and LTBI.


2003 ◽  
Vol 77 (12) ◽  
pp. 6867-6878 ◽  
Author(s):  
Jianhong Cao ◽  
John McNevin ◽  
Sarah Holte ◽  
Lisa Fink ◽  
Lawrence Corey ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells provide an important defense in controlling HIV-1 replication, particularly following acquisition of infection. To delineate the breadth and potency of these responses in patients upon initial presentation and before treatment, we determined the fine specificities and frequencies of gamma interferon (IFN-γ)-secreting CD8+ T cells recognizing all HIV-1 proteins in patients with primary infection. In these subjects, the earliest detected responses were directed predominantly against Nef, Tat, Vpr, and Env. Tat- and Vpr-specific CD8+ T cells accounted for the greatest frequencies of mean IFN-γ spot-forming cells (SFC). Nef-specific responses (10 of 21) were more commonly detected. A mean of 2.3 epitopes were recognized with various avidities per subject, and the number increased with the duration of infection (R = 0.47, P = 0.031). The mean frequency of CD8+ T cells (985 SFC/106 peripheral blood mononuclear cells) correlated with the number of epitopes recognized (R = 0.84, P < 0.0001) and the number of HLA-restricting alleles (R = 0.79, P < 0.0001). Neither the total SFC frequencies nor the number of epitopes recognized correlated with the concurrent plasma viral load. Seventeen novel epitopes were identified, four of which were restricted to HLA alleles (A23 and B72) that are common among African descendents. Thus, primary HIV-1 infection induces strong CD8+-T-cell immunity whose specificities broaden over time, but their frequencies and breadth do not correlate with HIV-1 containment when examined concurrently. Many novel epitopes, particularly directed to Nef, Tat, and Env, and frequently with unique HLA restrictions, merit further consideration in vaccine design.


2009 ◽  
Vol 77 (10) ◽  
pp. 4621-4630 ◽  
Author(s):  
Thorbjorg Einarsdottir ◽  
Euan Lockhart ◽  
JoAnne L. Flynn

ABSTRACT The host immune response is generally sufficient to contain Mycobacterium tuberculosis infection. It does not, however, efficiently prevent subsequent infection with M. tuberculosis or provide sterilizing immunity. While the understanding of the immune response generated against this pathogen is incomplete, improvements have been achieved due to advances in immunological tools. In this study, we analyzed the multifunctional nature of primary and memory CD8 T-cell responses generated during murine M. tuberculosis infection. We generated a recombinant M. tuberculosis strain expressing ovalbumin (OVA) epitopes in order to expand the peptides for the detection of CD8 T cells during M. tuberculosis infection and enable us to use OVA-specific reagents. Our results indicate that the majority of M. tuberculosis-specific CD8 T cells are limited to either cytotoxicity or the secretion of gamma interferon (IFN-γ), with cytotoxicity being far more prevalent than IFN-γ secretion. Memory CD8 T cells responded earlier and reached higher levels in the lungs than naïve CD8 T cells, as was expected. They were, however, less cytotoxic and secreted less IFN-γ than newly primed CD8 T cells, suggesting that one factor contributing to bacterial persistence and lack of sterilizing immunity may be the low quality of memory cells that are generated.


Sign in / Sign up

Export Citation Format

Share Document