scholarly journals H2-M3 Major Histocompatibility Complex Class Ib-Restricted CD8 T Cells Induced by Salmonella enterica Serovar Typhimurium Infection Recognize Proteins Released by Salmonella Serovar Typhimurium

2005 ◽  
Vol 73 (12) ◽  
pp. 8002-8008 ◽  
Author(s):  
S. Ugrinovic ◽  
C. G. Brooks ◽  
J. Robson ◽  
B. A. Blacklaws ◽  
C. E. Hormaeche ◽  
...  

ABSTRACT Salmonella enterica serovar Typhimurium causes a typhoid-like disease in mice which has been studied extensively as a model for typhoid fever in humans. CD8 T cells contribute to protection against S. enterica serovar Typhimurium in mice, but little is known about the specificity and major histocompatibility complex (MHC) restriction of the response. We report here that CD8 T-cell lines derived from S. enterica serovar Typhimurium-infected BALB/c mice lysed bone marrow macrophages infected with S. enterica serovar Typhimurium or pulsed with proteins from S. enterica serovar Typhimurium culture supernatants. Cytoxicity was beta-2-microglobulin dependent and largely TAP dependent, although not MHC class Ia restricted, as target cells of several different MHC haplotypes were lysed. The data suggested the participation of class Ib MHC molecules although no evidence for the presence of Qa1-restricted T cells could be found, unlike in previous reports. Instead, the T-cell lines lysed H2-M3-transfected fibroblasts infected with S. enterica serovar Typhimurium SL3261 or treated with Salmonella culture supernatants. Thus, this report increases the number of MHC class Ib antigen-presenting molecules known for Salmonella antigens to three: Qa-1, HLA-E, and now H2-M3. It also expands the range of pathogens that induce H2-M3-restricted CD8 T cells to include an example of gram-negative bacteria.

1995 ◽  
Vol 182 (6) ◽  
pp. 2007-2018 ◽  
Author(s):  
S M Behar ◽  
S A Porcelli ◽  
E M Beckman ◽  
M B Brenner

A class of molecules that is expressed on antigen presenting cells, exemplified by CD80 (B7), has been found to provide a necessary costimulatory signal for T cell activation and proliferation. CD28 and CTLA4 are the B7 counterreceptors and are expressed on the majority of human CD4+ T cells and many CD8+ T cells. The signal these molecules mediate is distinguished from other costimulatory signals by the finding that T cell recognition of antigen results in a prolonged state of T cell unresponsiveness or anergy, unless these costimulatory molecules are engaged. However, nearly half of the CD8+ and CD4-CD8- T cells lack CD28, and the costimulatory signals required for the activation of such cells are unknown. To understand the pathways of activation used by CD28- T cells, we have examined the costimulatory requirements of antigen-specific CD4-CD8- TCR(+)-alpha/beta circulating T cells that lack the expression of CD28. We have characterized two T cell lines, DN1 and DN6, that recognize a mycobacterial antigen, and are restricted not by major histocompatibility complex class I or II, but by CD1b or CD1c, two members of a family of major histocompatibility complex-related molecules that have been recently implicated in a distinct pathway for antigen presentation. Comparison of antigen-specific cytolytic responses of the DN1 and DN6 T cell lines against antigen-pulsed CD1+ monocytes or CD1+ B lymphoblastoid cell lines (B-LCL) demonstrated that these T cells recognized antigen presented by both types of cells. However, T cell proliferation occurred only when antigen was presented by CD1+ monocytes, indicating that the CD1+ monocytes expressed a costimulatory molecule that the B-LCL transfectants lacked. This hypothesis was confirmed by demonstrating that the T cells became anergic when incubated with the CD1(+)-transfected B-LCL in the presence of antigen, but not in the absence of antigen. The required costimulatory signal occurred by a CD28-independent mechanism since both the CD1+ monocytes and CD1+ B-LCL transfectants expressed B7-1 and B7-2, and DN1 and DN6 lacked surface expression of CD28. We propose that these data define a previously unrecognized pathway of costimulation for T cells distinct from that involving CD28 and its counterreceptors. We suggest that this B7-independent pathway plays a crucial role in the activation and maintenance of tolerance of at least a subset of CD28- T cells.


1989 ◽  
Vol 86 (17) ◽  
pp. 6729-6733 ◽  
Author(s):  
M Z Atassi ◽  
M Yoshioka ◽  
G S Bixler

Processing of a protein antigen into fragments is believed to be a prerequisite for its presentation by the antigen-presenting cell to the T cell. This model would predict that, in oligomeric proteins, T cells prepared with specificity for regions that are buried within subunit association surfaces should recognize the respective regions in vitro equally well on the isolated subunit or on the oligomer. Three hemoglobin (Hb) alpha-chain synthetic peptides, corresponding to areas that are situated either completely [alpha-(31-45)] or partially [alpha-(41-45) and alpha-(81-95)] within the interface between the alpha and beta subunits of Hb, and a fourth peptide representing a completely exposed area in tetrameric Hb were used as immunogens in SJL/J (H-2s) mice. Peptide-primed T cells were passaged in vitro with the respective peptide to obtain peptide-specific T-lymphocyte lines. T-cell clones were isolated from these lines by limiting dilution. T-cell lines and clones that were specific for buried regions in the subunit association surfaces recognized the free peptide and the isolated subunit but not the Hb tetramer. On the other hand, T cells with specificity against regions that are not involved in subunit interaction and are completely exposed in the tetramer recognized the peptide, the isolated subunit, and the oligomeric protein equally well. The responses of the T-cell lines and clones were major histocompatibility complex-restricted. Since the same x-irradiated antigen-presenting cells were employed, the results could not be attributed to differences or defects in Hb processing. The findings indicate that in vitro the native (unprocessed and undissociated) oligomeric protein was the trigger of major histocompatibility complex-restricted T-cell responses.


2002 ◽  
Vol 196 (12) ◽  
pp. 1627-1638 ◽  
Author(s):  
Laura Bonifaz ◽  
David Bonnyay ◽  
Karsten Mahnke ◽  
Miguel Rivera ◽  
Michel C. Nussenzweig ◽  
...  

To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal αDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c− cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When αDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4–48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of αDEC-205:OVA to DCs in the steady state initially induced 4–7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with αDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic αCD40 antibody produced large amounts of interleukin 2 and interferon γ, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2236-2236
Author(s):  
Guenther Koehne ◽  
Deepa Trivedi ◽  
Roxanne Y. Williams ◽  
Richard J. O’Reilly

Abstract Cell-mediated immunity is essential for control of human cytomegalovirus (HCMV) infection. We utilized a pool of 138 synthetic overlapping pentadecapeptides over-spanning the entire pp65 protein to generate polyclonal CMV-specific T-cell lines from 12 CMV-seropositive donors inheriting different HLA genotypes. Autologous monocyte-derived dendritic cells (DCs) pulsed with this complete pool consistently induced highly specific T-cells and in analyses of T-cell lines from 5 separate HLA-A*0201+ individuals demonstrate that this pp65-derived pentadecapeptide-pool selectively induced T-cells specifically reactive against sub-pools of pentadecapeptides which contained the HLA-A*0201 binding epitope NLVPMVATV. The specificity of these T-cells for this immunodominant nonapeptide was confirmed by MHC-tetramer staining and intracellular interferon-γ production, demonstrating that 38 – 60% of the CD8+ cell population were specific for this A*2-restricted peptide after 3 weeks of culture. These T cells also killed both nonapeptide-pulsed and CMV-infected target cells. In subsequent experiments using auotlogous monocyte-derived DC’s pulsed with the pentadecapeptide pool for the stimulation of CMV-specific T-cell lines in individuals other than HLA-A*2, the generated T cells selectively recognized 1–3 pentadecapeptides identified by secondary responses to a mapping grid of pentadecapeptide subpools with single overlaps. Responses against peptide loaded targets sharing single HLA class I or II alleles permitted the identification the restricting HLA alleles. Those T-cell lines from HLA-A*2 neg. donors contained high frequencies of CD4 and/or CD8 T-cells selectively reactive against peptides presented by other HLA alleles including known epitopes such as aa 341–350QYDPVAALF (HLA-A*2402) as well as unreported epitopes such as aa 267–275HERNGFTVL (HLA-B*4001 and B* 4002). In some donors, the peptide-specific IFN-g+ T-cells generated have been predominantly CD4+ T-cells. Like the peptide-specific CD8+ T-cells, we could determine both epitope and HLA-class II restricting element, e.g. aa513–523 FFWDANDIYRI (HLA-DRB1* 1301). These CD4+ T-cells also consistently exhibited cytotoxic activity against infected targets as well as peptide-loaded cells expressing the restricting HLA class II allele. Thus, synthetic overlapping pentadecapeptides spanning the sequence of the immunodominant protein of CMV-pp65, when loaded on DCs can consistently stimulate the in vitro generation of CD8+ and CD4+ T-cell lines from seropositive donors of diverse HLA genotypes. These cell lines are selectively enriched for T-cells specific for a limited number of immunodominant epitopes each presented by a single HLA class I or class II allele. This approach fosters expansion and selection of HLA-restricted CMV-pp65-reactive T-cell lines of high specificity which also lyse CMV-infected targets and may have advantages for generating virus-specific T-cells for adoptive immunotherapy.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2222-2222
Author(s):  
Maarten L. Zandvliet ◽  
J.H. Frederik Falkenburg ◽  
Inge Jedema ◽  
Roelof Willemze ◽  
Henk-Jan Guchelaar ◽  
...  

Abstract Reactivation of adenovirus (ADV), cytomegalovirus (CMV) and Epstein-Barr virus (EBV) can cause serious morbidity and mortality during the prolonged period of immune deficiency following allogeneic stem cell transplantation. It has been shown that adoptive transfer of donor-derived virus-specific T cells can be a successful strategy to control viral reactivation. To provide safe and effective anti-viral immunotherapy, we aimed to generate combined CD8+ and CD4+ T cell lines with high specificity for a broad range of viral epitopes. Isolation by the IFNg capture assay of virus-specific T cells that produce IFNg upon activation allows the generation of highly specific T cell lines without the need for extensive culture. However, it has been recently shown that specific upregulation of the co-stimulatory molecule CD137 upon antigen-specific activation of CD8+ and CD4+ T cells can also be used for isolation. We therefore analyzed IFNg production and CD137 expression by CD8+ and CD4+ T cells upon incubation of peripheral blood mononuclear cells (PBMC) from seropositive donors with peptides corresponding to 17 defined MHC class I restricted minimal epitopes from 10 different ADV, CMV, EBV and influenza (FLU) proteins, and 15-mer or 30-mer peptides containing MHC class II restricted epitopes from CMV pp65 or ADV hexon. Using tetramer and intracellular IFNg staining we first determined the fraction of CD8+ T cells that produced IFNg upon activation with the minimal epitopes. Specific IFNg production was observed for 58–100% of tetramer+ CD8+ T cells specific for CMV pp65 (n=6), and 83% for FLU (n=1), but only 18–58% for CMV pp50 (n=3) or IE-1 (n=3), 4–91% for EBV latent (n=3) and lytic (n=3) epitopes, and 41–63% for ADV hexon (n=2). In contrast to the variation in the fraction of IFNg-producing cells, we observed homogeneous upregulation of CD137 by the virus-specific tetramer+ T cell populations upon activation. In 2 cases where no CD137 expression by tetramer+ T cells could be detected, no IFNg production was observed either. These data suggest that the majority of CD8+ T cells specific for CMV pp65 or FLU can be isolated on basis of IFNg production, but only part of CD8+ T cell populations specific for other viral proteins, while complete virus-specific CD8+ T cell populations may be isolated on basis of CD137 expression. Activation of CD4+ T cells specific for CMV pp65 or ADV hexon with 15-mer or 30-mer peptides induced both specific IFNg production and CD137 expression. To investigate whether multiple virus-specific T cell populations could be isolated simultaneously, we next determined the kinetics of IFNg production after activation with defined MHC class I epitopes or peptides containing MHC class II epitopes. CMV- and EBV-specific CD8+ T cells and CMV-specific CD4+ T cells showed a rapid induction of IFNg production, which peaked after 4 hours and decreased thereafter. In contrast, ADV- and FLU-specific CD8+ T cells and ADV-specific CD4+ T cells, predominantly having a more early differentiation phenotype (CD27+CD28+) compared to CMV- and EBV-specific T cells, showed peak IFNg production after 8 hours that continued for more than 48 hours. This difference in phenotype and IFNg kinetics may suggest that the persistent and frequent presentation of CMV and EBV epitopes in vivo, in contrast to an intermittent exposure to ADV and FLU epitopes, drives differentiation and shapes the kinetics of the IFNg response of specific T cells. Kinetic analysis of CD137 expression showed uniform upregulation by virus-specific CD8+ T cell populations from day 1 to day 4 after activation, which peaked at day 2, suggesting that this may be the optimal time point for CD137-based isolation. In a limited number of experiments, virus-specific CD8+ and CD4+ T cells could be isolated based on CD137 expression within the same timeframe. These data indicate that virus-specific T cell populations can be more efficiently isolated at one time point on basis of CD137 expression than on basis of IFNg production, due to differences in IFNg kinetics. In conclusion, this study shows that T cell lines generated by CD137 isolation may comprise a significant number of virus-specific T cells which do not produce IFNg, but may have other effector functions. Furthermore, CD137-based enrichment may be more robust and allows the efficient simultaneous isolation of multiple virus-specific T cell populations due to uniform kinetics of CD137 expression.


1983 ◽  
Vol 157 (5) ◽  
pp. 1675-1680 ◽  
Author(s):  
S M Friedman ◽  
G S Thompson

Using a panel of partially cloned, OKT4+, DRw-1-specific, alloproliferative human T cell lines, we have identified two functionally restricted and reciprocating types of helper T cells. One provides major histocompatibility complex-restricted help for plaque-forming cell responses by DRw 1+ allogeneic B cells; the other preferentially amplifies the generation of allospecific cytotoxic T lymphocytes (CTL) from CTL precursors that have been suboptimally triggered by alloantigen.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1801-1801
Author(s):  
Stephanie Delluc ◽  
Lea Tourneur ◽  
Charlotte Boix ◽  
Anne-Sophie Michallet ◽  
Bruno Varet ◽  
...  

Abstract Acute myeloid leukemia (AML) is a heterogenous group of diseases characterized by a clonal proliferation of myeloid progenitors. Its poor prognosis with conventional chemotherapy justifies seeking for adjuvant immunotherapeutic approaches to eliminate minimal residual disease. We evaluated an immunotherapeutic strategy that bypass the need for epitope identification and the limitation due to HLA restriction. Naturally processed peptides were extracted by acid elution from AML cells at diagnosis, and loaded on mature dendritic cells (mDCs) derived from autologous monocytes obtained when the patients were in complete remission (CR). We evaluated i) the feasibility to elute naturally processed peptides from AML cells at diagnosis, ii) the capacity of mDCs loaded with eluted peptides (mDC/EP) to stimulate specific T cell lines in vitro. We showed that stimulation by mDC/EP was able to generate anti-leukemic T cells lines from PBMC of 6 AML patients in CR. CD4+ and CD8+ T cells were isolated from T cell lines of 5 patients and analyzed for their proliferation, INF-γ production and cytotoxicity in response to autologous or allogeneic AML targets, or to normal autologous PBMC. We showed that both CD4+ and CD8+ leukemia-specific T cells were generated in vitro by mDC/EP stimulations since proliferation of CD4+ T cells, IFN-γ secretion by CD4+ and CD8+ T cells and cytotoxicity mediated by CD8+ T cells were induced in response to stimulation with autologous AML cells. Furthermore, we could not detect auto-immune recognition of autologous normal PBMC, consistent with the specificity of the T cell response induced by mDC/EP. These results provide the proof of concept for using mDC/EP to vaccinate patients with poor-risk AML, and will soon be evaluated in a phse I/II clinical trial.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3273-3273
Author(s):  
Patrizia Comoli ◽  
Marco W. Schilham ◽  
Sabrina Basso ◽  
Tamara van Vreeswijk ◽  
Rita Maccario ◽  
...  

Abstract Human Adenovirus (HAdV) infection/reactivation may cause life-threatening complications in recipients of hematopoietic stem cell transplantation (HSCT), the highest risk being observed in pediatric recipients of a T-cell depleted allograft from haploidentical family donor. The effectiveness of pharmacological therapy for HAdV infection is still suboptimal. It has been recently demonstrated that cell therapy may offer a unique opportunity to restore antiviral immune surveillance, leading to clearance of infection and prevention/treatment of disease. However, infusion of HAdV-specific T-cells in the haplo-HSCT cohort poses the concern that GVHD may ensue as a consequence of T-cell transfer. We have conducted scale-up experiments to validate a method of in vitro culture to expand T-cells specific for HAdV, based on stimulation of donor peripheral blood mononuclear cells (PBMC) with a pool of 5 30-mer peptides derived from HAdV5 hexon protein, for use in recipients of haplo-HSCT (Veltrop-Duits et al, Eur J Immunol36, p2410; 2006). A total of 20 T-cell lines were generated, starting from a median of 20 × 106 donor PBMC, that yielded a median of 80 × 106 cells. Most of the cell lines obtained included a majority of CD4+ T-lymphocytes, with a lower % CD8+ cells (median and range: 78, 19–94 and 18, 5–58, respectively) but 5/20 lines contained a high number of CD8+ T cells (ranging between 43% and 58%), which were CD56+ and/or TCRγδ+, and in 1 case also 44% NK cells. Eighteen of the 20 T-cell lines were HAdV-specific, since they showed a median proliferation to the HAdV hexon peptide pool and inactivated HAdV of 14615 (95%CI 8924–31532) and 11103 (95%CI 8805–30174) cpm/105 cells after subtraction of background (responders+irradiated autologous PBMC), respectively. HAdV-specific lysis >10% at a 2:1 effector to target (E:T) ratio was observed in 50% of the T-cell lines. The 2 non-specific, as well as the 3 T-cell lines with lower specific activity, included >40% CD8+ T-cells. Production of IFNγ in an ELIspot assay to HAdV hexon peptide pool above 40 SFU/105 cells was observed in 9 out of 13 tested T-cell lines. Evaluation of specific response to hexon peptides in showed a majority of responses to II42 (80%), with 50–60% responses to II50, II57, II61, and II64. Only 2 out of the 20 T-cell lines tested were prevalently alloreactive against the recipient. Of the 18 HAdV-specific lines, 1 showed higher proliferation to patient PBMC than to HAdV (13518 vs 11717 mean cpm), and would have thus been discarded as unsuitable for in vivo use, while the other 17 showed no alloreactivity (14) or alloreactivity between 10 and 23% of specific proliferation (3). None of these 18 T-cell lines showed lysis >5% against recipient PHA blasts in the cytotoxicity assay. Our data show that PBMC stimulation with HAdV hexon protein-derived 30-mer peptides is able to reproducibly induce the generation of HAdV-specific CD4+ T-cell lines with efficient in vitro antiviral response in most HLA-mismatched HSCT donors. The majority of these T-cell lines show low/undetectable alloreactivity against recipient targets, and could therefore be safely employed for adoptive treatment of HAdV complications developing after HSCT from a HLA-haploidentical donor.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2225-2225
Author(s):  
Maarten L. Zandvliet ◽  
J.H. Frederik Falkenburg ◽  
Louise A. Veltrop-Duits ◽  
Marco W. Schilham ◽  
Roelof Willemze ◽  
...  

Abstract Human Adenovirus (HAdV) can cause serious morbidity in immunocompromised patients, in particular in pediatric recipients of allogeneic stem cell transplantation (alloSCT). Progression to disseminated adenoviral disease is associated with a high mortality, despite treatment with antiviral agents such as ribavirin and cidofovir. It has been demonstrated that reconstitution of HAdV-specific T cells is essential to control adenoviral infection after alloSCT. Adoptive transfer of donor-derived HAdV-specific T cells may therefore be a strategy to provide long-term protection from HAdV. In healthy individuals, T cells directed against HAdV are only detected at low frequencies and are predominantly directed to the HAdV hexon protein. Only recently, a number of immunodominant CD8+ and CD4+ epitopes of HAdV hexon have been defined. Since these epitopes are largely conserved between the different HAdV subgroups, T cells specific for these immunodominant epitopes may provide protection from a wide range of adenoviral serotypes. The aim of this study was to develop a method for the generation of combined CD8+ and CD4+ T cell lines with high and well defined specificity for the HAdV hexon protein. We first analyzed the frequencies of HAdV hexon-specific CD8+ and CD4+ T cells in healthy individuals using sensitive measurement by peptide-MHC tetramers, and intracellular cytokine staining combined with CD154 or peptide-MHC tetramer staining, after stimulation with defined MHC class I peptides, 30-mer peptides containing class II epitopes, or a HAdV hexon protein-spanning pool of overlapping 15-mer peptides (Miltenyi Biotec, Germany). We demonstrated that the frequencies of HAdV hexon-specific T cells were very low in most healthy individuals tested. HAdV hexon-specific CD8+ T cells were detectable in only 3/15 individuals (range 0.16–0.43% of CD8+ T cells), and hexon-specific CD4+ T cells were detected in all individuals with a median of 0.07% (range 0.004–0.38% of CD4+ T cells). The highest frequencies were found after stimulation with the hexon protein-spanning 15-mer peptide pool, indicating activation of both known and unknown epitopes. Kinetic analysis showed highest levels of IFNg production after 4–8 hours of stimulation for HAdV-specific CD8+ T cells, and after 4–48 hours of stimulation for HAdV-specific CD4+ T cells. The phenotype of these HAdV hexon-specific T cells corresponded to an early memory phenotype, CD27+, CD28+, CD62L+, CD45RO+. Despite these low or undetectable frequencies of HAdV-specific T cells, IFNg-based enrichment 4 hours after activation with the HAdV hexon protein-spanning peptide pool resulted in efficient isolation of CD8+ and CD4+ T cells recognizing both known and unknown HAdV hexon epitopes. Following a short culture period of 7 days, the T cell lines consisted of 49–80% CD8+ T cells and 13–15% CD4+ T cells. Restimulation by autologous EBV-LCL loaded with HAdV hexon peptide pool followed by intracellular IFNg staining showed that the frequency of HAdV-specific T cells was increased to 65–95% of CD8+ T cells, and 38–72% of CD4+ T cells. The frequency of HAdV-tetramer-positive cells was increased to 32–76% of CD8+ T cells, indicating that part of HAdV-specific CD8+ T cells recognized known epitopes. After 14 days, the frequency of HAdV-specific T cells had further increased to 89–94% of CD8+ T cells and 61–91% of CD4+ T cells. Starting with only 25x106 donor peripheral blood mononuclear cells, this strategy yielded T cell lines containing 1.3–2.7x106 HAdV-specific combined CD8+ and CD4+ T cells in 14 days. We conclude that we developed a GMP-grade method for the fast generation of highly HAdV-specific CD8+ and CD4+ T cell lines from all healthy donors tested, irrespective of HLA-restriction, for the treatment HAdV infection after alloSCT, with very limited risk of graft-versus-host disease.


Sign in / Sign up

Export Citation Format

Share Document