Adenovirus Specific T-Cell Lines Devoid of Alloreactivity Against Haploidentical Recipients Can Be Obtained Using a Set of Adenovirus Hexon Peptides.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3273-3273
Author(s):  
Patrizia Comoli ◽  
Marco W. Schilham ◽  
Sabrina Basso ◽  
Tamara van Vreeswijk ◽  
Rita Maccario ◽  
...  

Abstract Human Adenovirus (HAdV) infection/reactivation may cause life-threatening complications in recipients of hematopoietic stem cell transplantation (HSCT), the highest risk being observed in pediatric recipients of a T-cell depleted allograft from haploidentical family donor. The effectiveness of pharmacological therapy for HAdV infection is still suboptimal. It has been recently demonstrated that cell therapy may offer a unique opportunity to restore antiviral immune surveillance, leading to clearance of infection and prevention/treatment of disease. However, infusion of HAdV-specific T-cells in the haplo-HSCT cohort poses the concern that GVHD may ensue as a consequence of T-cell transfer. We have conducted scale-up experiments to validate a method of in vitro culture to expand T-cells specific for HAdV, based on stimulation of donor peripheral blood mononuclear cells (PBMC) with a pool of 5 30-mer peptides derived from HAdV5 hexon protein, for use in recipients of haplo-HSCT (Veltrop-Duits et al, Eur J Immunol36, p2410; 2006). A total of 20 T-cell lines were generated, starting from a median of 20 × 106 donor PBMC, that yielded a median of 80 × 106 cells. Most of the cell lines obtained included a majority of CD4+ T-lymphocytes, with a lower % CD8+ cells (median and range: 78, 19–94 and 18, 5–58, respectively) but 5/20 lines contained a high number of CD8+ T cells (ranging between 43% and 58%), which were CD56+ and/or TCRγδ+, and in 1 case also 44% NK cells. Eighteen of the 20 T-cell lines were HAdV-specific, since they showed a median proliferation to the HAdV hexon peptide pool and inactivated HAdV of 14615 (95%CI 8924–31532) and 11103 (95%CI 8805–30174) cpm/105 cells after subtraction of background (responders+irradiated autologous PBMC), respectively. HAdV-specific lysis >10% at a 2:1 effector to target (E:T) ratio was observed in 50% of the T-cell lines. The 2 non-specific, as well as the 3 T-cell lines with lower specific activity, included >40% CD8+ T-cells. Production of IFNγ in an ELIspot assay to HAdV hexon peptide pool above 40 SFU/105 cells was observed in 9 out of 13 tested T-cell lines. Evaluation of specific response to hexon peptides in showed a majority of responses to II42 (80%), with 50–60% responses to II50, II57, II61, and II64. Only 2 out of the 20 T-cell lines tested were prevalently alloreactive against the recipient. Of the 18 HAdV-specific lines, 1 showed higher proliferation to patient PBMC than to HAdV (13518 vs 11717 mean cpm), and would have thus been discarded as unsuitable for in vivo use, while the other 17 showed no alloreactivity (14) or alloreactivity between 10 and 23% of specific proliferation (3). None of these 18 T-cell lines showed lysis >5% against recipient PHA blasts in the cytotoxicity assay. Our data show that PBMC stimulation with HAdV hexon protein-derived 30-mer peptides is able to reproducibly induce the generation of HAdV-specific CD4+ T-cell lines with efficient in vitro antiviral response in most HLA-mismatched HSCT donors. The majority of these T-cell lines show low/undetectable alloreactivity against recipient targets, and could therefore be safely employed for adoptive treatment of HAdV complications developing after HSCT from a HLA-haploidentical donor.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2225-2225
Author(s):  
Maarten L. Zandvliet ◽  
J.H. Frederik Falkenburg ◽  
Louise A. Veltrop-Duits ◽  
Marco W. Schilham ◽  
Roelof Willemze ◽  
...  

Abstract Human Adenovirus (HAdV) can cause serious morbidity in immunocompromised patients, in particular in pediatric recipients of allogeneic stem cell transplantation (alloSCT). Progression to disseminated adenoviral disease is associated with a high mortality, despite treatment with antiviral agents such as ribavirin and cidofovir. It has been demonstrated that reconstitution of HAdV-specific T cells is essential to control adenoviral infection after alloSCT. Adoptive transfer of donor-derived HAdV-specific T cells may therefore be a strategy to provide long-term protection from HAdV. In healthy individuals, T cells directed against HAdV are only detected at low frequencies and are predominantly directed to the HAdV hexon protein. Only recently, a number of immunodominant CD8+ and CD4+ epitopes of HAdV hexon have been defined. Since these epitopes are largely conserved between the different HAdV subgroups, T cells specific for these immunodominant epitopes may provide protection from a wide range of adenoviral serotypes. The aim of this study was to develop a method for the generation of combined CD8+ and CD4+ T cell lines with high and well defined specificity for the HAdV hexon protein. We first analyzed the frequencies of HAdV hexon-specific CD8+ and CD4+ T cells in healthy individuals using sensitive measurement by peptide-MHC tetramers, and intracellular cytokine staining combined with CD154 or peptide-MHC tetramer staining, after stimulation with defined MHC class I peptides, 30-mer peptides containing class II epitopes, or a HAdV hexon protein-spanning pool of overlapping 15-mer peptides (Miltenyi Biotec, Germany). We demonstrated that the frequencies of HAdV hexon-specific T cells were very low in most healthy individuals tested. HAdV hexon-specific CD8+ T cells were detectable in only 3/15 individuals (range 0.16–0.43% of CD8+ T cells), and hexon-specific CD4+ T cells were detected in all individuals with a median of 0.07% (range 0.004–0.38% of CD4+ T cells). The highest frequencies were found after stimulation with the hexon protein-spanning 15-mer peptide pool, indicating activation of both known and unknown epitopes. Kinetic analysis showed highest levels of IFNg production after 4–8 hours of stimulation for HAdV-specific CD8+ T cells, and after 4–48 hours of stimulation for HAdV-specific CD4+ T cells. The phenotype of these HAdV hexon-specific T cells corresponded to an early memory phenotype, CD27+, CD28+, CD62L+, CD45RO+. Despite these low or undetectable frequencies of HAdV-specific T cells, IFNg-based enrichment 4 hours after activation with the HAdV hexon protein-spanning peptide pool resulted in efficient isolation of CD8+ and CD4+ T cells recognizing both known and unknown HAdV hexon epitopes. Following a short culture period of 7 days, the T cell lines consisted of 49–80% CD8+ T cells and 13–15% CD4+ T cells. Restimulation by autologous EBV-LCL loaded with HAdV hexon peptide pool followed by intracellular IFNg staining showed that the frequency of HAdV-specific T cells was increased to 65–95% of CD8+ T cells, and 38–72% of CD4+ T cells. The frequency of HAdV-tetramer-positive cells was increased to 32–76% of CD8+ T cells, indicating that part of HAdV-specific CD8+ T cells recognized known epitopes. After 14 days, the frequency of HAdV-specific T cells had further increased to 89–94% of CD8+ T cells and 61–91% of CD4+ T cells. Starting with only 25x106 donor peripheral blood mononuclear cells, this strategy yielded T cell lines containing 1.3–2.7x106 HAdV-specific combined CD8+ and CD4+ T cells in 14 days. We conclude that we developed a GMP-grade method for the fast generation of highly HAdV-specific CD8+ and CD4+ T cell lines from all healthy donors tested, irrespective of HLA-restriction, for the treatment HAdV infection after alloSCT, with very limited risk of graft-versus-host disease.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1801-1801
Author(s):  
Stephanie Delluc ◽  
Lea Tourneur ◽  
Charlotte Boix ◽  
Anne-Sophie Michallet ◽  
Bruno Varet ◽  
...  

Abstract Acute myeloid leukemia (AML) is a heterogenous group of diseases characterized by a clonal proliferation of myeloid progenitors. Its poor prognosis with conventional chemotherapy justifies seeking for adjuvant immunotherapeutic approaches to eliminate minimal residual disease. We evaluated an immunotherapeutic strategy that bypass the need for epitope identification and the limitation due to HLA restriction. Naturally processed peptides were extracted by acid elution from AML cells at diagnosis, and loaded on mature dendritic cells (mDCs) derived from autologous monocytes obtained when the patients were in complete remission (CR). We evaluated i) the feasibility to elute naturally processed peptides from AML cells at diagnosis, ii) the capacity of mDCs loaded with eluted peptides (mDC/EP) to stimulate specific T cell lines in vitro. We showed that stimulation by mDC/EP was able to generate anti-leukemic T cells lines from PBMC of 6 AML patients in CR. CD4+ and CD8+ T cells were isolated from T cell lines of 5 patients and analyzed for their proliferation, INF-γ production and cytotoxicity in response to autologous or allogeneic AML targets, or to normal autologous PBMC. We showed that both CD4+ and CD8+ leukemia-specific T cells were generated in vitro by mDC/EP stimulations since proliferation of CD4+ T cells, IFN-γ secretion by CD4+ and CD8+ T cells and cytotoxicity mediated by CD8+ T cells were induced in response to stimulation with autologous AML cells. Furthermore, we could not detect auto-immune recognition of autologous normal PBMC, consistent with the specificity of the T cell response induced by mDC/EP. These results provide the proof of concept for using mDC/EP to vaccinate patients with poor-risk AML, and will soon be evaluated in a phse I/II clinical trial.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 413-413
Author(s):  
Tetsuya Nishida ◽  
Ana Kostic ◽  
David G. Maloney ◽  
Rainer F. Storb ◽  
Stanley R. Riddell

Abstract Allogeneic hematopoietic stem cell transplantation (HSCT) following non-myeloablative (NM) conditioning is a promising approach for treating patients with advanced fludarabine refractory CLL. In this setting, a graft versus leukemia (GVL) effect mediated by donor T cells is critical for tumor eradication. We have evaluated the development of alloreactive and CLL-reactive cytotoxic T lymphocyte (CTL) responses in patients after NM-HSCT to determine if the generation of detectable T cell responses was associated with an antitumor response. Seven patients with fludarabine refractory CLL were conditioned with fludarabine (30mg/m2 x 3 doses) and total body irradiation (2 Gy) prior to receiving G-CSF mobilized peripheral blood stem cells from an HLA matched donor. Peripheral blood mononuclear cells (PBMC) were obtained from the recipient pretransplant and at intervals after NM-HSCT. When chimerism showed a major proportion of donor CD3+ T cells, the postransplant PBMC were stimulated in vitro with recipient CLL cells from the pretransplant collections. CLL cells lack or express low levels of co-stimulatory and adhesion molecules, and are poor stimulators of T cells in vitro. Thus, prior to their use as stimulators and targets, the CLL cells were activated with CD40 ligand (CD40L), which upregulates costimulatory, adhesion, and MHC molecule expression, and turns CLL cells into effective antigen presenting cells. The cultures were stimulated weekly and supplemented with IL2 and IL7. After two stimulations, the T cell lines were tested for cytotoxicity against donor and recipient target cells including recipient CLL. T cell lines generated from four patients with a good antitumor response after NM-HSCT exhibited cytotoxicity against recipient CLL and EBV transformed B cells (B-LCL), but not against donor B-LCL. By contrast, T cell lines generated from three patients with persistent or progressive disease after NM-HSCT did not have cytotoxicity against recipient CLL, despite the development of GVHD in all patients. Multiparameter flow cytometry and IFN-g secretion assay of T cell lines from patients with an antitumor response showed that both CD8+ and CD4+ T cells produced INF-g in response to recipient CLL. We sorted and expanded CD8+ INF-g+ and CD4+ IFN-g+ T cells and both subsets were able to lyse CLL cells. The cytotoxicity of CD4+ and CD8+ T cells was inhibited completely by concanamycin A, suggesting perforin is the major mechanism for leukemia cell lysis. Twenty-one CD8+ T cell clones specific for distinct minor histocompatibility antigens expressed on CLL were isolated from T cell lines of the four responding patients. Multiple specificities were recognized in three of the four patients. Screening a cDNA expression library has identified the genes encoding two minor histocompatibility antigens recognized by CD8+ T cells, and their characterization is in progress. These findings suggest that the development after NM-HSCT of early, diverse, alloreactive T cell responses specific for antigens expressed by CLL may be an important predictor of outcome. The identification of the antigens recognized may facilitate the development of strategies to evoke an effective antitumor response in a larger fraction of patients.


Blood ◽  
2006 ◽  
Vol 109 (1) ◽  
pp. 365-373 ◽  
Author(s):  
Thomas C. Wehler ◽  
Marion Nonn ◽  
Britta Brandt ◽  
Cedrik M. Britten ◽  
Mark Gröne ◽  
...  

AbstractIn HLA-incompatible hematopoietic stem cell transplantation, alloreactive donor T cells recognizing recipient mismatch HLA cause severe graft-versus-host disease (GVHD). Strategies allowing the selective depletion of alloreactive T cells as well as the enhancement of graft-versus-malignancy immunity would be beneficial. We generated donor CD8 T-cell lines in vitro using allogeneic recipient cells mismatched at a single HLA class I allele or haplotype as stimulators. Recipient cells were obtained from acute myeloid leukemias, renal-cell carcinomas, and CD40L-induced B lymphoblasts. Resulting alloreactive T cells were activated by incubating day 21 T-cell cultures with HLA-mismatch transfected K562 cells or recipient-derived fibroblasts. Selective allodepletion (SAD) was subsequently performed by a newly developed immunomagnetic depletion approach targeting the tumor necrosis factor receptor molecule CD137 (4-1BB). Compared with other activation-induced antigens, CD137 showed a superior performance based on a consistently low baseline expression and a rapid up-regulation following alloantigen stimulation. In 15 different SAD experiments, the frequency of alloreactive CD8 T cells was reduced to a median of 9.5% compared with undepleted control populations. The allodepleted T-cell subsets maintained significant antitumor and antiviral CD8 responses. In vitro expansion of tumor-reactive T cells followed by CD137-mediated SAD might enhance the antitumor efficacy of T-cell allografts with lower risk of inducing GVHD.


2018 ◽  
Vol 215 (9) ◽  
pp. 2265-2278 ◽  
Author(s):  
Colleen M. Lau ◽  
Ioanna Tiniakou ◽  
Oriana A. Perez ◽  
Margaret E. Kirkling ◽  
George S. Yap ◽  
...  

An IRF8-dependent subset of conventional dendritic cells (cDCs), termed cDC1, effectively cross-primes CD8+ T cells and facilitates tumor-specific T cell responses. Etv6 is an ETS family transcription factor that controls hematopoietic stem and progenitor cell (HSPC) function and thrombopoiesis. We report that like HSPCs, cDCs express Etv6, but not its antagonist, ETS1, whereas interferon-producing plasmacytoid dendritic cells (pDCs) express both factors. Deletion of Etv6 in the bone marrow impaired the generation of cDC1-like cells in vitro and abolished the expression of signature marker CD8α on cDC1 in vivo. Moreover, Etv6-deficient primary cDC1 showed a partial reduction of cDC-specific and cDC1-specific gene expression and chromatin signatures and an aberrant up-regulation of pDC-specific signatures. Accordingly, DC-specific Etv6 deletion impaired CD8+ T cell cross-priming and the generation of tumor antigen–specific CD8+ T cells. Thus, Etv6 optimizes the resolution of cDC1 and pDC expression programs and the functional fitness of cDC1, thereby facilitating T cell cross-priming and tumor-specific responses.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2236-2236
Author(s):  
Guenther Koehne ◽  
Deepa Trivedi ◽  
Roxanne Y. Williams ◽  
Richard J. O’Reilly

Abstract Cell-mediated immunity is essential for control of human cytomegalovirus (HCMV) infection. We utilized a pool of 138 synthetic overlapping pentadecapeptides over-spanning the entire pp65 protein to generate polyclonal CMV-specific T-cell lines from 12 CMV-seropositive donors inheriting different HLA genotypes. Autologous monocyte-derived dendritic cells (DCs) pulsed with this complete pool consistently induced highly specific T-cells and in analyses of T-cell lines from 5 separate HLA-A*0201+ individuals demonstrate that this pp65-derived pentadecapeptide-pool selectively induced T-cells specifically reactive against sub-pools of pentadecapeptides which contained the HLA-A*0201 binding epitope NLVPMVATV. The specificity of these T-cells for this immunodominant nonapeptide was confirmed by MHC-tetramer staining and intracellular interferon-γ production, demonstrating that 38 – 60% of the CD8+ cell population were specific for this A*2-restricted peptide after 3 weeks of culture. These T cells also killed both nonapeptide-pulsed and CMV-infected target cells. In subsequent experiments using auotlogous monocyte-derived DC’s pulsed with the pentadecapeptide pool for the stimulation of CMV-specific T-cell lines in individuals other than HLA-A*2, the generated T cells selectively recognized 1–3 pentadecapeptides identified by secondary responses to a mapping grid of pentadecapeptide subpools with single overlaps. Responses against peptide loaded targets sharing single HLA class I or II alleles permitted the identification the restricting HLA alleles. Those T-cell lines from HLA-A*2 neg. donors contained high frequencies of CD4 and/or CD8 T-cells selectively reactive against peptides presented by other HLA alleles including known epitopes such as aa 341–350QYDPVAALF (HLA-A*2402) as well as unreported epitopes such as aa 267–275HERNGFTVL (HLA-B*4001 and B* 4002). In some donors, the peptide-specific IFN-g+ T-cells generated have been predominantly CD4+ T-cells. Like the peptide-specific CD8+ T-cells, we could determine both epitope and HLA-class II restricting element, e.g. aa513–523 FFWDANDIYRI (HLA-DRB1* 1301). These CD4+ T-cells also consistently exhibited cytotoxic activity against infected targets as well as peptide-loaded cells expressing the restricting HLA class II allele. Thus, synthetic overlapping pentadecapeptides spanning the sequence of the immunodominant protein of CMV-pp65, when loaded on DCs can consistently stimulate the in vitro generation of CD8+ and CD4+ T-cell lines from seropositive donors of diverse HLA genotypes. These cell lines are selectively enriched for T-cells specific for a limited number of immunodominant epitopes each presented by a single HLA class I or class II allele. This approach fosters expansion and selection of HLA-restricted CMV-pp65-reactive T-cell lines of high specificity which also lyse CMV-infected targets and may have advantages for generating virus-specific T-cells for adoptive immunotherapy.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2222-2222
Author(s):  
Maarten L. Zandvliet ◽  
J.H. Frederik Falkenburg ◽  
Inge Jedema ◽  
Roelof Willemze ◽  
Henk-Jan Guchelaar ◽  
...  

Abstract Reactivation of adenovirus (ADV), cytomegalovirus (CMV) and Epstein-Barr virus (EBV) can cause serious morbidity and mortality during the prolonged period of immune deficiency following allogeneic stem cell transplantation. It has been shown that adoptive transfer of donor-derived virus-specific T cells can be a successful strategy to control viral reactivation. To provide safe and effective anti-viral immunotherapy, we aimed to generate combined CD8+ and CD4+ T cell lines with high specificity for a broad range of viral epitopes. Isolation by the IFNg capture assay of virus-specific T cells that produce IFNg upon activation allows the generation of highly specific T cell lines without the need for extensive culture. However, it has been recently shown that specific upregulation of the co-stimulatory molecule CD137 upon antigen-specific activation of CD8+ and CD4+ T cells can also be used for isolation. We therefore analyzed IFNg production and CD137 expression by CD8+ and CD4+ T cells upon incubation of peripheral blood mononuclear cells (PBMC) from seropositive donors with peptides corresponding to 17 defined MHC class I restricted minimal epitopes from 10 different ADV, CMV, EBV and influenza (FLU) proteins, and 15-mer or 30-mer peptides containing MHC class II restricted epitopes from CMV pp65 or ADV hexon. Using tetramer and intracellular IFNg staining we first determined the fraction of CD8+ T cells that produced IFNg upon activation with the minimal epitopes. Specific IFNg production was observed for 58–100% of tetramer+ CD8+ T cells specific for CMV pp65 (n=6), and 83% for FLU (n=1), but only 18–58% for CMV pp50 (n=3) or IE-1 (n=3), 4–91% for EBV latent (n=3) and lytic (n=3) epitopes, and 41–63% for ADV hexon (n=2). In contrast to the variation in the fraction of IFNg-producing cells, we observed homogeneous upregulation of CD137 by the virus-specific tetramer+ T cell populations upon activation. In 2 cases where no CD137 expression by tetramer+ T cells could be detected, no IFNg production was observed either. These data suggest that the majority of CD8+ T cells specific for CMV pp65 or FLU can be isolated on basis of IFNg production, but only part of CD8+ T cell populations specific for other viral proteins, while complete virus-specific CD8+ T cell populations may be isolated on basis of CD137 expression. Activation of CD4+ T cells specific for CMV pp65 or ADV hexon with 15-mer or 30-mer peptides induced both specific IFNg production and CD137 expression. To investigate whether multiple virus-specific T cell populations could be isolated simultaneously, we next determined the kinetics of IFNg production after activation with defined MHC class I epitopes or peptides containing MHC class II epitopes. CMV- and EBV-specific CD8+ T cells and CMV-specific CD4+ T cells showed a rapid induction of IFNg production, which peaked after 4 hours and decreased thereafter. In contrast, ADV- and FLU-specific CD8+ T cells and ADV-specific CD4+ T cells, predominantly having a more early differentiation phenotype (CD27+CD28+) compared to CMV- and EBV-specific T cells, showed peak IFNg production after 8 hours that continued for more than 48 hours. This difference in phenotype and IFNg kinetics may suggest that the persistent and frequent presentation of CMV and EBV epitopes in vivo, in contrast to an intermittent exposure to ADV and FLU epitopes, drives differentiation and shapes the kinetics of the IFNg response of specific T cells. Kinetic analysis of CD137 expression showed uniform upregulation by virus-specific CD8+ T cell populations from day 1 to day 4 after activation, which peaked at day 2, suggesting that this may be the optimal time point for CD137-based isolation. In a limited number of experiments, virus-specific CD8+ and CD4+ T cells could be isolated based on CD137 expression within the same timeframe. These data indicate that virus-specific T cell populations can be more efficiently isolated at one time point on basis of CD137 expression than on basis of IFNg production, due to differences in IFNg kinetics. In conclusion, this study shows that T cell lines generated by CD137 isolation may comprise a significant number of virus-specific T cells which do not produce IFNg, but may have other effector functions. Furthermore, CD137-based enrichment may be more robust and allows the efficient simultaneous isolation of multiple virus-specific T cell populations due to uniform kinetics of CD137 expression.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 206-206 ◽  
Author(s):  
Sonja Schmucker ◽  
Mario Assenmacher ◽  
Jurgen Schmitz ◽  
Anne Richter

Abstract Adoptive transfer of virus-specific T cells is a promising therapy for the treatment of infections in immunocompromised patients. Virus-specific T cells can readily be obtained from antigen-experienced, but not naïve donors. In this study we describe a cell culture system for the in vitro generation of CMV-specific T cells from naive T cells derived from CMV-seronegative donors. We isolated naïve T cells by magnetic depletion of non-T cells, CD25+ regulatory T cells, and CD45RO+ effector and memory T cells from peripheral blood mononuclear cells (PBMC) of CMV-seronegative donors. These naïve T cells were co-cultured with autologous mature monocyte-derived DC (MoDC) loaded with a pool of overlapping peptides from the CMV protein pp65. CD3-depleted autologous PBMC were used as feeder cells and CD28 antibody, IL-2, IL-7, and IL-15 were added to the culture. Already only 9–13 days after starting the priming culture, frequencies of 0.0024% and 0.009% pp65495–503/A2-tetramer+ cells among CD8+ T cells were found for 2 HLA-A2+ blood donors. In contrast pp65495–503/A2-tetramer+ T cells were not detectable when naive T cells were cultured with unpulsed MoDC. Tetramers are suitable tools for the identification of antigen-specific T cells but are restricted to single epitopes of mainly CD8+ T cells. To analyze primed CD4+ T cells as well as CD8+ T cells having specificities other than for the peptide pp65495–503, we looked for upregulation of the activation marker CD137 after a second stimulation and found increased frequencies of CD137+ CD4+ T cells as well as CD137+ CD8+ T cells in the pp65-primed cell cultures only when restimulated with the peptide pool of pp65. Because IFN-γ is important for the control of CMV infection, we studied the capability of the in vitro primed pp65-specific CD4+ and CD8+ T cells to produce this cytokine. Restimulation of the T cells with pp65 peptide pool induced IFN-γ secretion in up to 3.9% of the CD8+ T cells and up to 3.8% of the CD4+ T cells in each of six donors tested. No specific IFN-γ production was detected after restimulation with an irrelevant IE-1 peptide pool. As expected the frequency of pp65-specific T cells in the priming cultures is low. For generation of T cell lines, we magnetically enrich pp65- specific T cells according to their IFN-γ secretion using the cytokine secretion assay technology. After further cultivation for 2 weeks the antigen-specificity of the expanded T cells was again evaluated. Only if restimulated with the pp65 peptide pool 56.6% of the CD4+ T cells showed upregulated expression of the activation marker CD154 (CD40L). Cytokine analysis of the cells revealed IFN-γ production in 40.2% of the CD4+ T cells, of which 36% co-expressed IL-2, indicating the functionality of the in vitro primed and expanded T cells. In conclusion, we established a cell culture system for in vitro priming of CMV-specific CD4+ and CD8+ T cells derived from peripheral blood of donors not infected by CMV. This should extend the application of adoptive T cell therapy to patients for whom immune donors are not available.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3077-3077
Author(s):  
Xiao-hui Zhang ◽  
Guo-xiang Wang ◽  
Yan-rong Liu ◽  
Lan-Ping Xu ◽  
Kai-Yan Liu ◽  
...  

Abstract Abstract 3077 Background: Since prolonged thrombocytopenia (PT) is an independent risk factor for poor clinical outcome after allogeneic hematopoietic stem cell transplantation (allo-HSCT), the underlying mechanisms need to be understood in order to develop selective treatments. Previous studies1–4 have suggested that abnormalities in B cells may play a role in the pathogenesis of PT. However, abnormalities in B cells alone do not fully explain the complete pathogenic mechanisms of PT. Our previous studies5 showed that the frequency of megakaryocytes with a ploidy value ≤ 8N was significantly increased in patients who developed PT after allo-HSCT compared to the control group. Mechanisms concerning the megakaryocyte hypoplasia in PT after allo-HSCT are not well understood. Design and Methods: PT was defined as a platelet count ≤80 × 109/L for more than 3 months after HSCT, recovery of all other cell counts, and no apparent cause for thrombocytopenia, such as aGVHD, disease recurrence, CMV infection, or antiviral drug treatment at three months post-HSCT when all other blood cell counts had return to normal.5 We analyzed T cell subsets in bone marrow (BM) and peripheral blood (PB) from allo-HSCT recipients with and without PT (n = 23 and 17, respectively) and investigated the expression characteristics of homing receptors CX3CR1, CXCR4 and VLA-4 by flow cytometry. Futhermore, Mononuclear cells (MNCs) from PT patients and controls were cultured with and without autologous CD8+ T cells in vitro, and clarify the effect of activated CD8+ T cells on the ploidy and apoptosis of megakaryocytes in the bone marrow. Results: The results demonstrated that the percentage of CD3+ T cells in the BM was significantly higher in PT patients than the experimental controls (76.00 ± 13.04% and 57.49 ± 9.11%, respectively, P < 0.001), whereas this difference was not significant for the PB (71.01 ± 11.49% and 70.49 ± 12.89%, respectively, P = 0.911). While, some T cell subsets in the BM and PB from allo-HSCT recipients with PT were not significantly different from that of the experimental control group, such as CD8+ T cells, CD4+ T cells, CD4+ CD25bright T cells (regulatory T cells), CD44hi CD62Llo CD8+ T cells and naive T cells (CD11a+ CD45RA+). Furthermore, the surface expression of homing receptor CX3CR1 on BM T cells (64.16 ± 14.07% and 37.45 ± 19.66%, respectively, P < 0.001) and CD8+ T cells (56.25 ± 14.54% and 35.16 ± 20.81%, respectively, P = 0.036), but not in blood, were significantly increased in PT patients compared to controls. For these two groups of patients, the surface expression of CXCR4 and VLA-4 on T cells and CD8+ T cells from both BM and PB did not show significant differences. Through the study in vitro, we found that the activated CD8+ T cells in bone marrow of patients with PT might suppress apoptosis (MNC group and Co-culture group: 18.02 ± 3.60% and 13.39 ± 4.22%, P < 0.05, respectively) and Fas expression (MNC group and Co-culture group: 21.10 ± 3.93 and 15.10 ± 2.33, P <0.05, respectively) of megakaryocyte. In addition, megakaryocyte with a ploidy value ≤ 8N (MNC group: 40.03 ± 6.42% and 24.54 ± 4.31%, respectively, P < 0.05) was significantly increased in patients with PT compared to the control group. Conclusions: In conclusion, an increased surface expression of CX3CR1 on T cells may mediate the recruitment of CD8+ T cells into the bone marrow in patients with PT who received an allo-HSCT. Moreover, CD8+CX3CR1+ T cells, which can have significantly increased numbers in bone marrow of patients with PT, likely caused a reduction in the megakaryocyte ploidy, and suppressed megakaryocyte apoptosis via CD8+ T cell-mediated cytotoxic effect, possibly leading to impaired platelet production. Therefore, treatment targeting CX3CR1 should be considered as a reasonable therapeutic strategy for PT following allo-HSCT. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document