scholarly journals Interaction Network and Localization of Brucella abortus Membrane Proteins Involved in the Synthesis, Transport, and Succinylation of Cyclic β-1,2-Glucans

2015 ◽  
Vol 197 (9) ◽  
pp. 1640-1648 ◽  
Author(s):  
Leticia S. Guidolin ◽  
Susana M. Morrone Seijo ◽  
Francisco F. Guaimas ◽  
Diego J. Comerci ◽  
Andrés E. Ciocchini

ABSTRACTCyclic β-1,2-glucans (CβG) are periplasmic homopolysaccharides that play an important role in the virulence and interaction ofBrucellawith the host. Once synthesized in the cytoplasm by the CβG synthase (Cgs), CβG are transported to the periplasm by the CβG transporter (Cgt) and succinylated by the CβG modifier enzyme (Cgm). Here, we used a bacterial two-hybrid system and coimmunoprecipitation techniques to study the interaction network between these three integral inner membrane proteins. Our results indicate that Cgs, Cgt, and Cgm can form both homotypic and heterotypic interactions. Analyses carried out with Cgs mutants revealed that the N-terminal region of the protein (Cgs region 1 to 418) is required to sustain the interactions with Cgt and Cgm as well as with itself. We demonstrated by single-cell fluorescence analysis that inBrucella, Cgs and Cgt are focally distributed in the membrane, particularly at the cell poles, whereas Cgm is mostly distributed throughout the membrane with a slight accumulation at the poles colocalizing with the other partners. In summary, our results demonstrate that Cgs, Cgt, and Cgm form a membrane-associated biosynthetic complex. We propose that the formation of a membrane complex could serve as a mechanism to ensure the fidelity of CβG biosynthesis by coordinating their synthesis with the transport and modification.IMPORTANCEIn this study, we analyzed the interaction and localization of the proteins involved in the synthesis, transport, and modification ofBrucella abortuscyclic β-1,2-glucans (CβG), which play an important role in the virulence and interaction ofBrucellawith the host. We demonstrate that these proteins interact, forming a complex located mainly at the cell poles; this is the first experimental evidence of the existence of a multienzymatic complex involved in the metabolism of osmoregulated periplasmic glucans in bacteria and argues for another example of pole differentiation inBrucella. We propose that the formation of this membrane complex could serve as a mechanism to ensure the fidelity of CβG biosynthesis by coordinating synthesis with the transport and modification.

2005 ◽  
Vol 187 (7) ◽  
pp. 2233-2243 ◽  
Author(s):  
Gouzel Karimova ◽  
Nathalie Dautin ◽  
Daniel Ladant

ABSTRACT Formation of the Escherichia coli division septum is catalyzed by a number of essential proteins (named Fts) that assemble into a ring-like structure at the future division site. Several of these Fts proteins are intrinsic transmembrane proteins whose functions are largely unknown. Although these proteins appear to be recruited to the division site in a hierarchical order, the molecular interactions underlying the assembly of the cell division machinery remain mostly unspecified. In the present study, we used a bacterial two-hybrid system based on interaction-mediated reconstitution of a cyclic AMP (cAMP) signaling cascade to unravel the molecular basis of septum assembly by analyzing the protein interaction network among E. coli cell division proteins. Our results indicate that the Fts proteins are connected to one another through multiple interactions. A deletion mapping analysis carried out with two of these proteins, FtsQ and FtsI, revealed that different regions of the polypeptides are involved in their associations with their partners. Furthermore, we showed that the association between two Fts hybrid proteins could be modulated by the coexpression of a third Fts partner. Altogether, these data suggest that the cell division machinery assembly is driven by the cooperative association among the different Fts proteins to form a dynamic multiprotein structure at the septum site. In addition, our study shows that the cAMP-based two-hybrid system is particularly appropriate for analyzing molecular interactions between membrane proteins.


2013 ◽  
Vol 87 (23) ◽  
pp. 12745-12755 ◽  
Author(s):  
Sonja Blasche ◽  
Stefan Wuchty ◽  
Seesandra V. Rajagopala ◽  
Peter Uetz

Although most of the 73 open reading frames (ORFs) in bacteriophage λ have been investigated intensively, the function of many genes in host-phage interactions remains poorly understood. Using yeast two-hybrid screens of all lambda ORFs for interactions with its hostEscherichia coli, we determined a raw data set of 631 host-phage interactions resulting in a set of 62 high-confidence interactions after multiple rounds of retesting. These links suggest novel regulatory interactions between theE. colitranscriptional network and lambda proteins. Targeted host proteins and genes required for lambda infection are enriched among highly connected proteins, suggesting that bacteriophages resemble interaction patterns of human viruses. Lambda tail proteins interact with both bacterial fimbrial proteins andE. coliproteins homologous to other phage proteins. Lambda appears to dramatically differ from other phages, such as T7, because of its unusually large number of modified and processed proteins, which reduces the number of host-virus interactions detectable by yeast two-hybrid screens.


2010 ◽  
Vol 192 (12) ◽  
pp. 3235-3239 ◽  
Author(s):  
Johann Mignolet ◽  
Charles Van der Henst ◽  
Cécile Nicolas ◽  
Michaël Deghelt ◽  
Delphine Dotreppe ◽  
...  

ABSTRACT The bacterial pathogen Brucella abortus was recently demonstrated to recruit the essential cytoplasmic histidine kinase PdhS to its old pole. Here, we report identification of the fumarase FumC as a specific partner for the N-terminal “sensing” domain of PdhS, using an ORFeome-based yeast two-hybrid screen. We observed that FumC and PdhS colocalize at the old pole of B. abortus, while the other fumarase FumA is not polarly localized. FumC is not required for PdhS localization, and polar FumC localization is not FumA dependent. FumC homologs are not polarly localized in Sinorhizobium meliloti and Caulobacter crescentus, suggesting that polar recruitment of FumC by PdhS is evolutionarily recent.


2015 ◽  
Vol 60 (3) ◽  
pp. 1515-1520 ◽  
Author(s):  
Lisa Yun Song ◽  
Sara D'Souza ◽  
Karen Lam ◽  
Tina Manzhu Kang ◽  
Pamela Yeh ◽  
...  

We used classical mutagens in Gram-negativeEscherichia colito study synergies with different classes of antibiotics, test models of antibiotic mechanisms of action, and examine the basis of synergy. We used 4-nitroquinoline 1-oxide (4NQO), zebularine (ZEB), 5-azacytidine (5AZ), 2-aminopurine (2AP), and 5-bromodeoxyuridine (5BrdU) as mutagens (with bactericidal potency of 4NQO > ZEB > 5AZ > 2AP > 5BrdU) and vancomycin (VAN), ciprofloxacin (CPR), trimethoprim (TMP), gentamicin (GEN), tetracycline (TET), erythromycin (ERY), and chloramphenicol (CHL) as antibiotics. We detected the strongest synergies with 4NQO, an agent that oxidizes guanines and ultimately results in double-strand breaks when paired with the bactericidal antibiotics VAN, TMP, CPR, and GEN, but no synergies with the bacteriostatic antibiotics TET, ERY, and CHL. Each of the other mutagens displays synergies with the bactericidal antibiotics to various degrees that reflect their potencies, as well as with some of the other mutagens. The results support recent models showing that bactericidal antibiotics kill bacteria principally by ultimately generating more double-strand breaks than can be repaired. We discuss the synergies seen here and elsewhere as representing dose effects of not the proximal target damage but rather the ultimate resulting double-strand breaks. We also used the results of pairwise tests to place the classic mutagens into functional antibacterial categories within a previously defined drug interaction network.


1999 ◽  
Vol 91 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Kenji Ohata ◽  
Toshihiro Takami ◽  
Alaa El-Naggar ◽  
Michiharu Morino ◽  
Akimasa Nishio ◽  
...  

✓ The treatment of spinal intramedullary arteriovenous malformations (AVMs) with a diffuse-type nidus that contains a neural element poses different challenges compared with a glomus-type nidus. The surgical elimination of such lesions involves the risk of spinal cord ischemia that results from coagulation of the feeding artery that, at the same time, supplies cord parenchyma. However, based on evaluation of the risks involved in performing embolization, together with the frequent occurrence of reperfusion, which necessitates frequent reembolization, the authors consider surgery to be a one-stage solution to a disease that otherwise has a very poor prognosis. Magnetic resonance (MR) imaging revealed diffuse-type intramedullary AVMs in the cervical spinal cords of three patients who subsequently underwent surgery via the posterior approach. The AVM was supplied by the anterior spinal artery in one case and by both the anterior and posterior spinal arteries in the other two cases. In all three cases, a posterior median myelotomy was performed up to the vicinity of the anterior median fissure that divided the spinal cord together with the nidus, and the feeding artery was coagulated and severed at its origin from the anterior spinal artery. In the two cases in which the posterior spinal artery fed the AVM, the feeding artery was coagulated on the dorsal surface of the spinal cord. Neurological outcome improved in one patient and deteriorated slightly to mildly in the other two patients. Postoperative angiography demonstrated complete disappearance of the AVM in all cases. Because of the extremely poor prognosis of patients with spinal intramedullary AVMs, this surgical technique for the treatment of diffuse-type AVMs provides acceptable operative outcome. Surgical intervention should be considered when managing a patient with a diffuse-type intramedullary AVM in the cervical spinal cord.


Sign in / Sign up

Export Citation Format

Share Document