scholarly journals Interaction Network among Escherichia coli Membrane Proteins Involved in Cell Division as Revealed by Bacterial Two-Hybrid Analysis

2005 ◽  
Vol 187 (7) ◽  
pp. 2233-2243 ◽  
Author(s):  
Gouzel Karimova ◽  
Nathalie Dautin ◽  
Daniel Ladant

ABSTRACT Formation of the Escherichia coli division septum is catalyzed by a number of essential proteins (named Fts) that assemble into a ring-like structure at the future division site. Several of these Fts proteins are intrinsic transmembrane proteins whose functions are largely unknown. Although these proteins appear to be recruited to the division site in a hierarchical order, the molecular interactions underlying the assembly of the cell division machinery remain mostly unspecified. In the present study, we used a bacterial two-hybrid system based on interaction-mediated reconstitution of a cyclic AMP (cAMP) signaling cascade to unravel the molecular basis of septum assembly by analyzing the protein interaction network among E. coli cell division proteins. Our results indicate that the Fts proteins are connected to one another through multiple interactions. A deletion mapping analysis carried out with two of these proteins, FtsQ and FtsI, revealed that different regions of the polypeptides are involved in their associations with their partners. Furthermore, we showed that the association between two Fts hybrid proteins could be modulated by the coexpression of a third Fts partner. Altogether, these data suggest that the cell division machinery assembly is driven by the cooperative association among the different Fts proteins to form a dynamic multiprotein structure at the septum site. In addition, our study shows that the cAMP-based two-hybrid system is particularly appropriate for analyzing molecular interactions between membrane proteins.

2008 ◽  
Vol 191 (1) ◽  
pp. 333-346 ◽  
Author(s):  
Gouzel Karimova ◽  
Carine Robichon ◽  
Daniel Ladant

ABSTRACT Formation of the Escherichia coli division septum is catalyzed by a number of essential proteins (named Fts) that assemble into a ring-like structure at the future division site. Many of these Fts proteins are intrinsic transmembrane proteins whose functions are largely unknown. In the present study, we attempted to identify a novel putative component(s) of the E. coli cell division machinery by searching for proteins that could interact with known Fts proteins. To do that, we used a bacterial two-hybrid system based on interaction-mediated reconstitution of a cyclic AMP (cAMP) signaling cascade to perform a library screening in order to find putative partners of E. coli cell division protein FtsL. Here we report the characterization of YmgF, a 72-residue integral membrane protein of unknown function that was found to associate with many E. coli cell division proteins and to localize to the E. coli division septum in an FtsZ-, FtsA-, FtsQ-, and FtsN-dependent manner. Although YmgF was previously shown to be not essential for cell viability, we found that when overexpressed, YmgF was able to overcome the thermosensitive phenotype of the ftsQ1(Ts) mutation and restore its viability under low-osmolarity conditions. Our results suggest that YmgF might be a novel component of the E. coli cell division machinery.


2015 ◽  
Vol 197 (9) ◽  
pp. 1640-1648 ◽  
Author(s):  
Leticia S. Guidolin ◽  
Susana M. Morrone Seijo ◽  
Francisco F. Guaimas ◽  
Diego J. Comerci ◽  
Andrés E. Ciocchini

ABSTRACTCyclic β-1,2-glucans (CβG) are periplasmic homopolysaccharides that play an important role in the virulence and interaction ofBrucellawith the host. Once synthesized in the cytoplasm by the CβG synthase (Cgs), CβG are transported to the periplasm by the CβG transporter (Cgt) and succinylated by the CβG modifier enzyme (Cgm). Here, we used a bacterial two-hybrid system and coimmunoprecipitation techniques to study the interaction network between these three integral inner membrane proteins. Our results indicate that Cgs, Cgt, and Cgm can form both homotypic and heterotypic interactions. Analyses carried out with Cgs mutants revealed that the N-terminal region of the protein (Cgs region 1 to 418) is required to sustain the interactions with Cgt and Cgm as well as with itself. We demonstrated by single-cell fluorescence analysis that inBrucella, Cgs and Cgt are focally distributed in the membrane, particularly at the cell poles, whereas Cgm is mostly distributed throughout the membrane with a slight accumulation at the poles colocalizing with the other partners. In summary, our results demonstrate that Cgs, Cgt, and Cgm form a membrane-associated biosynthetic complex. We propose that the formation of a membrane complex could serve as a mechanism to ensure the fidelity of CβG biosynthesis by coordinating their synthesis with the transport and modification.IMPORTANCEIn this study, we analyzed the interaction and localization of the proteins involved in the synthesis, transport, and modification ofBrucella abortuscyclic β-1,2-glucans (CβG), which play an important role in the virulence and interaction ofBrucellawith the host. We demonstrate that these proteins interact, forming a complex located mainly at the cell poles; this is the first experimental evidence of the existence of a multienzymatic complex involved in the metabolism of osmoregulated periplasmic glucans in bacteria and argues for another example of pole differentiation inBrucella. We propose that the formation of this membrane complex could serve as a mechanism to ensure the fidelity of CβG biosynthesis by coordinating synthesis with the transport and modification.


2021 ◽  
Vol 22 (10) ◽  
pp. 5328
Author(s):  
Miao Ma ◽  
Margaux Lustig ◽  
Michèle Salem ◽  
Dominique Mengin-Lecreulx ◽  
Gilles Phan ◽  
...  

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


2004 ◽  
Vol 186 (18) ◽  
pp. 6110-6117 ◽  
Author(s):  
André Piette ◽  
Claudine Fraipont ◽  
Tanneke den Blaauwen ◽  
Mirjam E. G. Aarsman ◽  
Soumya Pastoret ◽  
...  

ABSTRACT In Escherichia coli, cell division is mediated by the concerted action of about 12 proteins that assemble at the division site to presumably form a complex called the divisome. Among these essential division proteins, the multimodular class B penicillin-binding protein 3 (PBP3), which is specifically involved in septal peptidoglycan synthesis, consists of a short intracellular M1-R23 peptide fused to a F24-L39 membrane anchor that is linked via a G40-S70 peptide to an R71-I236 noncatalytic module itself linked to a D237-V577 catalytic penicillin-binding module. On the basis of localization analyses of PBP3 mutants fused to green fluorescent protein by fluorescence microscopy, it appears that the first 56 amino acid residues of PBP3 containing the membrane anchor and the G40-E56 peptide contain the structural determinants required to target the protein to the cell division site and that none of the putative protein interaction sites present in the noncatalytic module are essential for the positioning of the protein to the division site. Based on the effects of increasing production of FtsQ or FtsW on the division of cells expressing PBP3 mutants, it is suggested that these proteins could interact. We postulate that FtsQ could play a role in regulating the assembly of these division proteins at the division site and the activity of the peptidoglycan assembly machineries within the divisome.


2002 ◽  
Vol 184 (3) ◽  
pp. 695-705 ◽  
Author(s):  
Joseph C. Chen ◽  
Michael Minev ◽  
Jon Beckwith

ABSTRACT FtsQ, a 276-amino-acid, bitopic membrane protein, is one of the nine proteins known to be essential for cell division in gram-negative bacterium Escherichia coli. To define residues in FtsQ critical for function, we performed random mutagenesis on the ftsQ gene and identified four alleles (ftsQ2, ftsQ6, ftsQ15, and ftsQ65) that fail to complement the ftsQ1(Ts) mutation at the restrictive temperature. Two of the mutant proteins, FtsQ6 and FtsQ15, are functional at lower temperatures but are unable to localize to the division site unless wild-type FtsQ is depleted, suggesting that they compete poorly with the wild-type protein for septal targeting. The other two mutants, FtsQ2 and FtsQ65, are nonfunctional at all temperatures tested and have dominant-negative effects when expressed in an ftsQ1(Ts) strain at the permissive temperature. FtsQ2 and FtsQ65 localize to the division site in the presence or absence of endogenous FtsQ, but they cannot recruit downstream cell division proteins, such as FtsL, to the septum. These results suggest that FtsQ2 and FtsQ65 compete efficiently for septal targeting but fail to promote the further assembly of the cell division machinery. Thus, we have separated the localization ability of FtsQ from its other functions, including recruitment of downstream cell division proteins, and are beginning to define regions of the protein responsible for these distinct capabilities.


2007 ◽  
Vol 189 (20) ◽  
pp. 7273-7280 ◽  
Author(s):  
Dirk-Jan Scheffers ◽  
Carine Robichon ◽  
Gert Jan Haan ◽  
Tanneke den Blaauwen ◽  
Gregory Koningstein ◽  
...  

ABSTRACT The Escherichia coli cell division protein FtsQ is a central component of the divisome. FtsQ is a bitopic membrane protein with a large C-terminal periplasmic domain. In this work we investigated the role of the transmembrane segment (TMS) that anchors FtsQ in the cytoplasmic membrane. A set of TMS mutants was made and analyzed for the ability to complement an ftsQ mutant. Study of the various steps involved in FtsQ biogenesis revealed that one mutant (L29/32R;V38P) failed to functionally insert into the membrane, whereas another mutant (L29/32R) was correctly assembled and interacted with FtsB and FtsL but failed to localize efficiently to the cell division site. Our results indicate that the FtsQ TMS plays a role in FtsQ localization to the division site.


2020 ◽  
Vol 367 (14) ◽  
Author(s):  
Sofia Chioccioli ◽  
Patrizia Bogani ◽  
Sara Del Duca ◽  
Lara Mitia Castronovo ◽  
Alberto Vassallo ◽  
...  

ABSTRACT Histidine biosynthesis is one of the most characterized metabolic routes for its antiquity and its central role in cellular metabolism; indeed, it represents a cross-road between nitrogen metabolism and de novo synthesis of purines. This interconnection is due to the activity of imidazole glycerol phosphate synthase, a heterodimeric enzyme constituted by the products of two his genes, hisH and hisF, encoding a glutamine amidotransferase and a cyclase, respectively. Despite their interaction was suggested by several in vitro experiments, their in vivo complex formation has not been demonstrated. On the contrary, the analysis of the entire Escherichia coli interactome performed using the yeast two hybrid system did not suggest the in vivo interaction of the two IGP synthase subunits. The aim of this study was to demonstrate the interaction of the two proteins using the Bacterial Adenylate Cyclase Two-Hybrid (BACTH) system. Data obtained demonstrated the in vivo interaction occurring between the proteins encoded by the E. coli hisH and hisF genes; this finding might also open the way to pharmaceutical applications through the design of selective drugs toward this enzyme.


Sign in / Sign up

Export Citation Format

Share Document