scholarly journals Surface Viscoelasticity of Individual Gram-Negative Bacterial Cells Measured Using Atomic Force Microscopy

2008 ◽  
Vol 190 (12) ◽  
pp. 4225-4232 ◽  
Author(s):  
Virginia Vadillo-Rodriguez ◽  
Terry J. Beveridge ◽  
John R. Dutcher

ABSTRACT The cell envelope of gram-negative bacteria is responsible for many important biological functions: it plays a structural role, it accommodates the selective transfer of material across the cell wall, it undergoes changes made necessary by growth and division, and it transfers information about the environment into the cell. Thus, an accurate quantification of cell mechanical properties is required not only to understand physiological processes but also to help elucidate the relationship between cell surface structure and function. We have used a novel, atomic force microscopy (AFM)-based approach to probe the mechanical properties of single bacterial cells by applying a constant compressive force to the cell under fluid conditions while measuring the time-dependent displacement (creep) of the AFM tip due to the viscoelastic properties of the cell. For these experiments, we chose a representative gram-negative bacterium, Pseudomonas aeruginosa PAO1, and we used regular V-shaped AFM cantilevers with pyramid-shaped and colloidal tips. We find that the cell response is well described by a three-element mechanical model which describes an effective cell spring constant, k 1, and an effective time constant, τ, for the creep deformation. Adding glutaraldehyde, an agent that increases the covalent bonding of the cell surface, produced a significant increase in k 1 together with a significant decrease in τ. This work represents a new attempt toward the understanding of the nanomechanical properties of single bacteria while they are under fluid conditions, which could be of practical value for elucidating, for instance, the biomechanical effects of drugs (such as antibiotics) on pathogens.

Micron ◽  
2012 ◽  
Vol 43 (12) ◽  
pp. 1232-1238 ◽  
Author(s):  
Maria N. Starodubtseva ◽  
Nikolai I. Yegorenkov ◽  
Irina A. Nikitina

2004 ◽  
Vol 70 (9) ◽  
pp. 5441-5446 ◽  
Author(s):  
Virginia Vadillo-Rodríguez ◽  
Henk J. Busscher ◽  
Willem Norde ◽  
Joop de Vries ◽  
René J. B. Dijkstra ◽  
...  

ABSTRACT Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a nanometer scale. For AFM, bacterial cells need to be firmly anchored to a substratum surface in order to withstand the friction forces from the silicon nitride tip. Different strategies for the immobilization of bacteria have been described in the literature. This paper compares AFM interaction forces obtained between Klebsiella terrigena and silicon nitride for three commonly used immobilization methods, i.e., mechanical trapping of bacteria in membrane filters, physical adsorption of negatively charged bacteria to a positively charged surface, and glutaraldehyde fixation of bacteria to the tip of the microscope. We have shown that different sample preparation techniques give rise to dissimilar interaction forces. Indeed, the physical adsorption of bacterial cells on modified substrata may promote structural rearrangements in bacterial cell surface structures, while glutaraldehyde treatment was shown to induce physicochemical and mechanical changes on bacterial cell surface properties. In general, mechanical trapping of single bacterial cells in filters appears to be the most reliable method for immobilization.


2000 ◽  
Vol 39 (Part 1, No. 6B) ◽  
pp. 3711-3716 ◽  
Author(s):  
Hatsuki Shiga ◽  
Yukako Yamane ◽  
Etsuro Ito ◽  
Kazuhiro Abe ◽  
Kazushige Kawabata ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1661
Author(s):  
Katarzyna Adamiak ◽  
Katarzyna Lewandowska ◽  
Alina Sionkowska

Collagen films are widely used as adhesives in medicine and cosmetology. However, its properties require modification. In this work, the influence of salicin on the properties of collagen solution and films was studied. Collagen was extracted from silver carp skin. The rheological properties of collagen solutions with and without salicin were characterized by steady shear tests. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. It was found that the addition of salicin modified the roughness of collagen films and their mechanical and rheological properties. The above-mentioned parameters are very important in potential applications of collagen films containing salicin.


2018 ◽  
Vol 114 (3) ◽  
pp. 513a
Author(s):  
Yuri M. Efremov ◽  
Mirian Velay-Lizancos ◽  
Daniel M. Suter ◽  
Pablo D. Zavattieri ◽  
Arvind Raman

PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e30204 ◽  
Author(s):  
David Martinez-Martin ◽  
Carolina Carrasco ◽  
Mercedes Hernando-Perez ◽  
Pedro J. de Pablo ◽  
Julio Gomez-Herrero ◽  
...  

Scanning ◽  
2011 ◽  
Vol 34 (1) ◽  
pp. 6-11 ◽  
Author(s):  
Bao You Liu ◽  
Guang Min Zhang ◽  
Xue Ling Li ◽  
Heng Chen

Sign in / Sign up

Export Citation Format

Share Document