scholarly journals Links between Anr and Quorum Sensing in Pseudomonas aeruginosa Biofilms

2015 ◽  
Vol 197 (17) ◽  
pp. 2810-2820 ◽  
Author(s):  
John H. Hammond ◽  
Emily F. Dolben ◽  
T. Jarrod Smith ◽  
Sabin Bhuju ◽  
Deborah A. Hogan

ABSTRACTInPseudomonas aeruginosa, the transcription factor Anr controls the cellular response to low oxygen or anoxia. Anr activity is high in oxygen-limited environments, including biofilms and populations associated with chronic infections, and Anr is necessary for persistence in a model of pulmonary infection. In this study, we characterized the Anr regulon in biofilm-grown cells at 1% oxygen in the laboratory strain PAO1 and in a quorum sensing (QS)-deficient clinical isolate, J215. As expected, transcripts related to denitrification, arginine fermentation, high-affinity cytochrome oxidases, and CupA fimbriae were lower in the Δanrderivatives. In addition, we observed that transcripts associated with quorum sensing regulation, iron acquisition and storage, type VI secretion, and the catabolism of aromatic compounds were also differentially expressed in the Δanrstrains. Prior reports have shown that quorum sensing-defective mutants have higher levels of denitrification, and we found that multiple Anr-regulated processes, including denitrification, were strongly inversely proportional to quorum sensing in both transcriptional and protein-based assays. We also found that in LasR-defective strains but not their LasR-intact counterparts, Anr regulated the production of the 4-hydroxy-2-alkylquinolines, which play roles in quorum sensing and interspecies interactions. These data show that Anr was required for the expression of important metabolic pathways in low-oxygen biofilms, and they reveal an expanded and compensatory role for Anr in the regulation of virulence-related genes in quorum sensing mutants, such as those commonly isolated from infections.IMPORTANCEPseudomonas aeruginosacauses acute ocular, soft tissue, and pulmonary infections, as well as chronic infections in the airways of cystic fibrosis patients.P. aeruginosauses quorum sensing (QS) to regulate virulence, but mutations in the gene encoding the master regulator of QS,lasR, are frequently observed in clinical isolates. We demonstrated that the regulon attributed to Anr, an oxygen-sensitive transcription factor, was more highly expressed inlasRmutants. Furthermore, we show that Anr regulates the production of several different secreted factors inlasRmutants. These data demonstrate the importance of Anr in naturally occurring quorum sensing mutants in the context of chronic infections.

2020 ◽  
Vol 202 (18) ◽  
Author(s):  
Giulia Orazi ◽  
Fabrice Jean-Pierre ◽  
George A. O’Toole

ABSTRACT The thick mucus within the airways of individuals with cystic fibrosis (CF) promotes frequent respiratory infections that are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent pathogens that cause CF pulmonary infections, and both are among the most common etiologic agents of chronic wound infections. Furthermore, the ability of P. aeruginosa and S. aureus to form biofilms promotes the establishment of chronic infections that are often difficult to eradicate using antimicrobial agents. In this study, we found that multiple LasR-regulated exoproducts of P. aeruginosa, including 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), siderophores, phenazines, and rhamnolipids, likely contribute to the ability of P. aeruginosa PA14 to shift S. aureus Newman norfloxacin susceptibility profiles. Here, we observe that exposure to P. aeruginosa exoproducts leads to an increase in intracellular norfloxacin accumulation by S. aureus. We previously showed that P. aeruginosa supernatant dissipates the S. aureus membrane potential, and furthermore, depletion of the S. aureus proton motive force recapitulates the effect of the P. aeruginosa PA14 supernatant on shifting norfloxacin sensitivity profiles of biofilm-grown S. aureus Newman. From these results, we hypothesize that exposure to P. aeruginosa PA14 exoproducts leads to increased uptake of the drug and/or an impaired ability of S. aureus Newman to efflux norfloxacin. Surprisingly, the effect observed here of P. aeruginosa PA14 exoproducts on S. aureus Newman susceptibility to norfloxacin seemed to be specific to these strains and this antibiotic. Our results illustrate that microbially derived products can alter the ability of antimicrobial agents to kill bacterial biofilms. IMPORTANCE Pseudomonas aeruginosa and Staphylococcus aureus are frequently coisolated from multiple infection sites, including the lungs of individuals with cystic fibrosis (CF) and nonhealing diabetic foot ulcers. Coinfection with P. aeruginosa and S. aureus has been shown to produce worse outcomes compared to infection with either organism alone. Furthermore, the ability of these pathogens to form biofilms enables them to cause persistent infection and withstand antimicrobial therapy. In this study, we found that P. aeruginosa-secreted products dramatically increase the ability of the antibiotic norfloxacin to kill S. aureus biofilms. Understanding how interspecies interactions alter the antibiotic susceptibility of bacterial biofilms may inform treatment decisions and inspire the development of new therapeutic strategies.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Rasmus Lykke Marvig ◽  
Søren Damkiær ◽  
S. M. Hossein Khademi ◽  
Trine M. Markussen ◽  
Søren Molin ◽  
...  

ABSTRACTPseudomonas aeruginosaairway infections are a major cause of mortality and morbidity of cystic fibrosis (CF) patients. In order to persist,P. aeruginosadepends on acquiring iron from its host, and multiple different iron acquisition systems may be active during infection. This includes the pyoverdine siderophore and thePseudomonasheme utilization (phu) system. While the regulation and mechanisms of several iron-scavenging systems are well described, it is not clear whether such systems are targets for selection during adaptation ofP. aeruginosato the host environment. Here we investigated the within-host evolution of the transmissibleP. aeruginosaDK2 lineage. We found positive selection for promoter mutations leading to increased expression of thephusystem. By mimicking conditions of the CF airwaysin vitro, we experimentally demonstrate that increased expression ofphuRconfers a growth advantage in the presence of hemoglobin, thus suggesting thatP. aeruginosaevolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additionalP. aeruginosalineages isolated from CF airways and found similar adaptive evolution in two distinct lineages (DK1 and PA clone C). Furthermore, in all three lineages,phuRpromoter mutations coincided with the loss of pyoverdine production, suggesting that within-host adaptation toward heme utilization is triggered by the loss of pyoverdine production. Targeting heme utilization might therefore be a promising strategy for the treatment ofP. aeruginosainfections in CF patients.IMPORTANCEMost bacterial pathogens depend on scavenging iron within their hosts, which makes the battle for iron between pathogens and hosts a hallmark of infection. Accordingly, the ability of the opportunistic pathogenPseudomonas aeruginosato cause chronic infections in cystic fibrosis (CF) patients also depends on iron-scavenging systems. While the regulation and mechanisms of several such iron-scavenging systems have been well described, not much is known about how the within-host selection pressures act on the pathogens’ ability to acquire iron. Here, we investigated the within-host evolution ofP. aeruginosa, and we found evidence thatP. aeruginosaduring long-term infections evolves toward iron acquisition from hemoglobin. This adaptive strategy might be due to a selective loss of other iron-scavenging mechanisms and/or an increase in the availability of hemoglobin at the site of infection. This information is relevant to the design of novel CF therapeutics and the development of models of chronic CF infections.


2019 ◽  
Vol 201 (9) ◽  
Author(s):  
Hui Zhou ◽  
Meizhen Wang ◽  
Nicole E. Smalley ◽  
Maxim Kostylev ◽  
Amy L. Schaefer ◽  
...  

ABSTRACT Pseudomonas aeruginosa uses quorum sensing (QS) to regulate the production of a battery of secreted products. At least some of these products are shared among the population and serve as public goods. When P. aeruginosa is grown on casein as the sole carbon and energy source, the QS-induced extracellular protease elastase is required for growth. We isolated a P. aeruginosa variant, which showed increased production of QS-induced factors after repeated transfers in casein broth. This variant, P. aeruginosa QS*, had a mutation in the glutathione synthesis gene gshA. We describe several experiments that show a gshA coding variant and glutathione affect the QS response. The P. aeruginosa QS transcription factor LasR has a redox-sensitive cysteine (C79). We report that GshA variant cells with a LasR C79S substitution show a similar QS response to that of wild-type P. aeruginosa. Surprisingly, it is not LasR but the QS transcription factor RhlR that is more active in bacteria containing the variant gshA. Our results demonstrate that QS integrates information about cell density and the cellular redox state via glutathione levels. IMPORTANCE Pseudomonas aeruginosa and other bacteria coordinate group behaviors using a chemical communication system called quorum sensing (QS). The QS system of P. aeruginosa is complex, with several regulators and signals. We show that decreased levels of glutathione lead to increased gene activation in P. aeruginosa, which did not occur in a strain carrying the redox-insensitive variant of a transcription factor. The ability of P. aeruginosa QS transcription factors to integrate information about cell density and cellular redox state shows these transcription factors can fine-tune levels of the gene products they control in response to at least two types of signals or cues.


2016 ◽  
Vol 198 (13) ◽  
pp. 1812-1826 ◽  
Author(s):  
Sean D. Stacey ◽  
Christopher L. Pritchett

ABSTRACTPseudomonas aeruginosathrives in multiple environments and is capable of causing life-threatening infections in immunocompromised patients. RsmA is a posttranscriptional regulator that controls virulence factor production and biofilm formation. In this study, we investigated the expression and activity ofrsmAand the protein that it encodes, RsmA, inP. aeruginosamucAmutant strains, which are common in chronic infections. We determined that AlgU regulates a previously unknownrsmApromoter inP. aeruginosa. Western blot analysis confirmed that AlgU controlsrsmAexpression in both a laboratory strain and a clinical isolate. RNase protection assays confirmed the presence of tworsmAtranscripts and suggest that RpoS and AlgU regulatersmAexpression. Due to the increased amounts of RsmA inmucAmutant strains, a translational leader fusion of the RsmA target,tssA1, was constructed and tested inmucA,algU,retS,gacA, andrsmAmutant backgrounds to examine posttranscriptional activity. From these studies, we determined that RsmA is active inmucA22mutants, suggesting a role for RsmA inmucAmutant strains. Taken together, we have demonstrated that AlgU controlsrsmAtranscription and is responsible for RsmA activity inmucAmutant strains. We propose that RsmA is active inP. aeruginosamucAmutant strains and that RsmA also plays a role in chronic infections.IMPORTANCEP. aeruginosacauses severe infections in immunocompromised patients. The posttranscriptional regulator RsmA is known to control virulence and biofilm formation. We identify a newrsmApromoter and determine that AlgU is important in the control ofrsmAexpression. MutantmucAstrains that are considered mucoid were used to confirm increasedrsmAexpression from the AlgU promoter. We demonstrate, for the first time, that there is RsmA activity in mucoidP. aeruginosastrains. Our work suggests that RsmA may play a role during chronic infections as well as acute infections.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Fengming Ding ◽  
Ken-Ichi Oinuma ◽  
Nicole E. Smalley ◽  
Amy L. Schaefer ◽  
Omar Hamwy ◽  
...  

ABSTRACTPseudomonas aeruginosauses two acyl-homoserine lactone signals and two quorum sensing (QS) transcription factors, LasR and RhlR, to activate dozens of genes. LasR responds toN-3-oxo-dodecanoyl-homoserine lactone (3OC12-HSL) and RhlR toN-butanoyl-homoserine lactone (C4-HSL). There is a thirdP. aeruginosaacyl-homoserine-lactone-responsive transcription factor, QscR, which acts to dampen or delay activation of genes by LasR and RhlR by an unknown mechanism. To better understand the role of QscR inP. aeruginosaQS, we performed a chromatin immunoprecipitation analysis, which showed this transcription factor bound the promoter of only a single operon of three genes linked toqscR, PA1895 to PA1897. Other genes that appear to be regulated by QscR in transcriptome studies were not direct targets of QscR. Deletion of PA1897 recapitulates the early QS activation phenotype of a QscR-null mutant, and the phenotype of a QscR-null mutant was complemented by PA1895-1897 but not by PA1897 alone. We conclude that QscR acts to modulate quorum sensing through regulation of a single operon, apparently raising the QS threshold of the population and providing a “brake” on QS autoinduction.IMPORTANCEQuorum sensing, a cell-cell communication system, is broadly distributed among bacteria and is commonly used to regulate the production of shared products. An important consequence of quorum sensing is a delay in production of certain products until the population density is high. The bacteriumPseudomonas aeruginosahas a particularly complicated quorum sensing system involving multiple signals and receptors. One of these receptors, QscR, downregulates gene expression, unlike the other receptors inP. aeruginosa. QscR does so by inducing the expression of a single operon whose function provides an element of resistance to a population reaching a quorum. This finding has importance for design of quorum sensing inhibitory strategies and can also inform design of synthetic biological circuits that use quorum sensing receptors to regulate gene expression.


mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Marie-Christine Groleau ◽  
Thays de Oliveira Pereira ◽  
Valérie Dekimpe ◽  
Eric Déziel

ABSTRACT The bacterium Pseudomonas aeruginosa has emerged as a central threat in health care settings and can cause a large variety of infections. It expresses an arsenal of virulence factors and a diversity of survival functions, many of which are finely and tightly regulated by an intricate circuitry of three quorum sensing (QS) systems. The las system is considered at the top of the QS hierarchy and activates the rhl and pqs systems. It is composed of the LasR transcriptional regulator and the LasI autoinducer synthase, which produces 3-oxo-C12-homoserine lactone (3-oxo-C12-HSL), the ligand of LasR. RhlR is the transcriptional regulator for the rhl system and is associated with RhlI, which produces its cognate autoinducer C4-HSL. The third QS system is composed of the pqsABCDE operon and the MvfR (PqsR) regulator. PqsABCD synthetize 4-hydroxy-2-alkylquinolines (HAQs), which include ligands activating MvfR. PqsE is not required for HAQ production and instead is associated with the expression of genes controlled by the rhl system. While RhlR is often considered the main regulator of rhlI, we confirmed that LasR is in fact the principal regulator of C4-HSL production and that RhlR regulates rhlI and production of C4-HSL essentially only in the absence of LasR by using liquid chromatography-mass spectrometry quantifications and gene expression reporters. Investigating the expression of RhlR targets also clarified that activation of RhlR-dependent QS relies on PqsE, especially when LasR is not functional. This work positions RhlR as the key QS regulator and points to PqsE as an essential effector for full activation of this regulation. IMPORTANCE Pseudomonas aeruginosa is a versatile bacterium found in various environments. It can cause severe infections in immunocompromised patients and naturally resists many antibiotics. The World Health Organization listed it among the top priority pathogens for research and development of new antimicrobial compounds. Quorum sensing (QS) is a cell-cell communication mechanism, which is important for P. aeruginosa adaptation and pathogenesis. Here, we validate the central role of the PqsE protein in QS particularly by its impact on the regulator RhlR. This study challenges the traditional dogmas of QS regulation in P. aeruginosa and ties loose ends in our understanding of the traditional QS circuit by confirming RhlR to be the main QS regulator in P. aeruginosa. PqsE could represent an ideal target for the development of new control methods against the virulence of P. aeruginosa. This is especially important when considering that LasR-defective mutants frequently arise, e.g., in chronic infections.


2017 ◽  
Vol 199 (21) ◽  
Author(s):  
Jean-Paul Toussaint ◽  
Anna Farrell-Sherman ◽  
Tamar Perla Feldman ◽  
Nicole E. Smalley ◽  
Amy L. Schaefer ◽  
...  

ABSTRACT The laboratory strain of Pseudomonas aeruginosa, PAO1, activates genes for catabolism of adenosine using quorum sensing (QS). However, this strain is not well-adapted for growth on adenosine, with doubling times greater than 40 h. We previously showed that when PAO1 is grown on adenosine and casein, variants emerge that grow rapidly on adenosine. To understand the mechanism by which this adaptation occurs, we performed whole-genome sequencing of five isolates evolved for rapid growth on adenosine. All five genomes had a gene duplication-amplification (GDA) event covering several genes, including the quorum-regulated nucleoside hydrolase gene, nuh, and PA0148, encoding an adenine deaminase. In addition, two of the growth variants also exhibited a nuh promoter mutation. We recapitulated the rapid growth phenotype with a plasmid containing six genes common to all the GDA events. We also showed that nuh and PA0148, the two genes at either end of the common GDA, were sufficient to confer rapid growth on adenosine. Additionally, we demonstrated that the variant nuh promoter increased basal expression of nuh but maintained its QS regulation. Therefore, GDA in P. aeruginosa confers the ability to grow efficiently on adenosine while maintaining QS regulation of nucleoside catabolism. IMPORTANCE Pseudomonas aeruginosa thrives in many habitats and is an opportunistic pathogen of humans. In these diverse environments, P. aeruginosa must adapt to use myriad potential carbon sources. P. aeruginosa PAO1 cannot grow efficiently on nucleosides, including adenosine; however, it can acquire this ability through genetic adaptation. We show that the mechanism of adaptation is by amplification of a specific region of the genome and that the amplification preserves the regulation of the adenosine catabolic pathway by quorum sensing. These results demonstrate an underexplored mechanism of adaptation by P. aeruginosa, with implications for phenotypes such as development of antibiotic resistance.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Arunava Bandyopadhaya ◽  
A. Aria Tzika ◽  
Laurence G. Rahme

ABSTRACT Skeletal muscle function is compromised in many illnesses, including chronic infections. The Pseudomonas aeruginosa quorum sensing (QS) signal, 2-amino acetophenone (2-AA), is produced during acute and chronic infections and excreted in human tissues, including the lungs of cystic fibrosis patients. We have shown that 2-AA facilitates pathogen persistence, likely via its ability to promote the formation of bacterial persister cells, and that it acts as an interkingdom immunomodulatory signal that epigenetically reprograms innate immune functions. Moreover, 2-AA compromises muscle contractility and impacts the expression of genes involved in reactive oxygen species (ROS) homeostasis in skeletal muscle and in mitochondrial functions. Here, we elucidate the molecular mechanisms of 2-AA’s impairment of skeletal muscle function and ROS homeostasis. Murine in vivo and differentiated C2C12 myotube cell studies showed that 2-AA promotes ROS generation in skeletal muscle via the modulation of xanthine oxidase (XO) activity, NAD(P)H oxidase2 (NOX2) protein level, and the activity of antioxidant enzymes. ROS accumulation triggers the activity of AMP-activated protein kinase (AMPK), likely upstream of the observed locations of induction of ubiquitin ligases Muscle RING Finger 1 (MuRF1) and Muscle Atrophy F-box (MAFbx), and induces autophagy-related proteins. The protein-level perturbation in skeletal muscle of silent mating type information regulation 2 homolog 1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1), and uncoupling protein 3 (UCP3) is rescued by the antioxidant N-acetyl-l-cysteine (NAC). Together, these results unveil a novel form of action of a QS bacterial molecule and provide molecular insights into the 2-AA-mediated skeletal muscle dysfunction caused by P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa, a bacterium that is resistant to treatment, causes serious acute, persistent, and relapsing infections in humans. There is increasing evidence that bacterial excreted small molecules play a critical role during infection. We have shown that a quorum sensing (QS)-regulated excreted small molecule, 2-AA, which is abundantly produced by P. aeruginosa, promotes persistent infections, dampens host inflammation, and triggers mitochondrial dysfunction in skeletal muscle. QS is a cell-to-cell communication system utilized by bacteria to promote collective behaviors. The significance of our study in identifying a mechanism that leads to skeletal muscle dysfunction, via the action of a QS molecule, is that it may open new avenues in the control of muscle loss as a result of infection and sepsis. Given that QS is a common characteristic of prokaryotes, it is possible that 2-AA-like molecules promoting similar effects may exist in other pathogens.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Dallas L. Mould ◽  
Nico J. Botelho ◽  
Deborah A. Hogan

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa damages hosts through the production of diverse secreted products, many of which are regulated by quorum sensing (QS). The lasR gene, which encodes a central QS regulator, is frequently mutated in clinical isolates from chronic infections, and loss of LasR function (LasR−) generally impairs the activity of downstream QS regulators RhlR and PqsR. We found that in cocultures containing LasR+ and LasR− strains, LasR− strains hyperproduce the RhlR/RhlI-regulated antagonistic factors pyocyanin and rhamnolipids in diverse models and media and in different strain backgrounds. Diffusible QS autoinducers produced by the wild type were not required for this effect. Using transcriptomics, genetics, and biochemical approaches, we uncovered a reciprocal interaction between wild-type and lasR mutant pairs wherein the iron-scavenging siderophore pyochelin produced by the lasR mutant induced citrate release and cross-feeding from the wild type. Citrate, a metabolite often secreted in low iron environments, stimulated RhlR signaling and RhlI levels in LasR−but not in LasR+ strains. These studies reveal the potential for complex interactions between recently diverged, genetically distinct isolates within populations from single chronic infections. IMPORTANCE Coculture interactions between lasR loss-of-function and LasR+ Pseudomonas aeruginosa strains may explain the worse outcomes associated with the presence of LasR− strains. More broadly, this report illustrates how interactions within a genotypically diverse population, similar to those that frequently develop in natural settings, can promote unpredictably high virulence factor production.


2017 ◽  
Vol 83 (16) ◽  
Author(s):  
Mei-Zhen Wang ◽  
Bai-Min Lai ◽  
Ajai A. Dandekar ◽  
Yu-Sheng Yang ◽  
Na Li ◽  
...  

ABSTRACT Pseudomonas aeruginosa SD-1 is efficient at degrading aromatic compounds and can therefore contribute to the bioremediation of wastewater. P. aeruginosa uses quorum sensing (QS) to regulate the production of numerous secreted “public goods.” In wastewater bioaugmentation applications, there are myriad nitrogen sources, and we queried whether various nitrogen sources impact the stabilities of both QS and the bacterial populations. In a laboratory strain of P. aeruginosa, PAO1, the absence of a nitrogen source has been shown to destabilize these populations through the emergence of QS mutant “cheaters.” We tested the ability of SD-1 to grow in casein broth, a condition that requires QS for growth, when the nitrogen source with either NH4Cl, NaNO3, or NaNO2 or with no added nitrogen source. There was great variability in susceptibility to invasion by QS mutant cheaters and, by extension, the stability of the SD-1 population. When grown with NH4Cl as an extra nitrogen source, no population collapse was observed; by contrast, two-thirds of cultures grown in the presence of NaNO2 collapsed. In the populations that collapsed, the frequency of social cheaters exceeded 40%. NaNO3 and NaNO2 directly favor QS mutants of P. aeruginosa SD-1. Although the mechanism by which these nitrogen sources act is not clear, these data indicate that the metabolism of nitrogen can affect the stability of bacterial populations, an important observation for continuing industrial applications with this species. IMPORTANCE Bioaugmentation as a method to help remediate wastewater pollutant streams holds significant potential to enhance traditional methods of treatment. Addition of microbes that can catabolize organic pollutants can be an effective method to remove several toxic compounds. Such bioaugmented strains of bacteria have been shown to be susceptible to competition from the microbiota that are present in wastewater streams, limiting their potential effectiveness. Here, we show that bioaugmentation strains of bacteria might also be susceptible to invasion by social cheaters and that the nitrogen sources available in the wastewater might influence the ability of cheaters to overtake the bioaugmentation strains. Our results imply that control over the nitrogen sources in a wastewater stream or selective addition of certain nitrogen sources could help stabilize bioaugmentation strains of bacteria.


Sign in / Sign up

Export Citation Format

Share Document