scholarly journals Genetic and Transcriptional Analyses of the Flagellar Gene Cluster in Actinoplanes missouriensis

2016 ◽  
Vol 198 (16) ◽  
pp. 2219-2227 ◽  
Author(s):  
Moon-Sun Jang ◽  
Yoshihiro Mouri ◽  
Kaoru Uchida ◽  
Shin-Ichi Aizawa ◽  
Masayuki Hayakawa ◽  
...  

ABSTRACTActinoplanes missouriensis, a Gram-positive and soil-inhabiting bacterium, is a member of the rare actinomycetes. The filamentous cells produce sporangia, which contain hundreds of flagellated spores that can swim rapidly for a short period of time until they find niches for germination. These swimming cells are called zoospores, and the mechanism of this unique temporal flagellation has not been elucidated. Here, we report all of the flagellar genes in the bacterial genome and their expected function and contribution for flagellar morphogenesis. We identified a large flagellar gene cluster composed of 33 genes that encode the majority of proteins essential for assembling the functional flagella of Gram-positive bacteria. One noted exception to the cluster was the location of thefliQgene, which was separated from the cluster. We examined the involvement of four genes in flagellar biosynthesis by gene disruption,fliQ,fliC,fliK, andlytA. Furthermore, we performed a transcriptional analysis of the flagellar genes using RNA samples prepared fromA. missouriensisgrown on a sporangium-producing agar medium for 1, 3, 6, and 40 days. We demonstrated that the transcription of the flagellar genes was activated in conjunction with sporangium formation. Eleven transcriptional start points of the flagellar genes were determined using the rapid amplification of cDNA 5′ ends (RACE) procedure, which revealed the highly conserved promoter sequence CTCA(N15–17)GCCGAA. This result suggests that a sigma factor is responsible for the transcription of all flagellar genes and that the flagellar structure assembles simultaneously.IMPORTANCEThe biology of a zoospore is very interesting from the viewpoint of morphogenesis, survival strategy, and evolution. Here, we analyzed flagellar genes inA. missouriensis, which produces sporangia containing hundreds of flagellated spores each. Zoospores released from the sporangia swim for a short time before germination occurs. We identified a large flagellar gene cluster and an orphan flagellar gene (fliQ). These findings indicate that the zoospore flagellar components are typical of Gram-positive bacteria. However, the transcriptional analysis revealed that all flagellar genes are transcribed simultaneously during sporangium formation, a pattern differing from the orderly, regulated expression of flagellar genes in other bacteria, such asSalmonellaandEscherichia coli. These results suggest a novel regulatory mechanism for flagellar formation inA. missouriensis.

2014 ◽  
Vol 80 (16) ◽  
pp. 5028-5036 ◽  
Author(s):  
Kiyoko T. Miyamoto ◽  
Mamoru Komatsu ◽  
Haruo Ikeda

ABSTRACTMycosporines and mycosporine-like amino acids (MAAs), including shinorine (mycosporine-glycine-serine) and porphyra-334 (mycosporine-glycine-threonine), are UV-absorbing compounds produced by cyanobacteria, fungi, and marine micro- and macroalgae. These MAAs have the ability to protect these organisms from damage by environmental UV radiation. Although no reports have described the production of MAAs and the corresponding genes involved in MAA biosynthesis from Gram-positive bacteria to date, genome mining of the Gram-positive bacterial database revealed that two microorganisms belonging to the orderActinomycetales,Actinosynnema mirumDSM 43827 andPseudonocardiasp. strain P1, possess a gene cluster homologous to the biosynthetic gene clusters identified from cyanobacteria. When the two strains were grown in liquid culture,Pseudonocardiasp. accumulated a very small amount of MAA-like compound in a medium-dependent manner, whereasA. mirumdid not produce MAAs under any culture conditions, indicating that the biosynthetic gene cluster ofA. mirumwas in a cryptic state in this microorganism. In order to characterize these biosynthetic gene clusters, each biosynthetic gene cluster was heterologously expressed in an engineered host,Streptomyces avermitilisSUKA22. Since the resultant transformants carrying the entire biosynthetic gene cluster controlled by an alternative promoter produced mainly shinorine, this is the first confirmation of a biosynthetic gene cluster for MAA from Gram-positive bacteria. Furthermore,S. avermitilisSUKA22 transformants carrying the biosynthetic gene cluster for MAA ofA. mirumaccumulated not only shinorine and porphyra-334 but also a novel MAA. Structure elucidation revealed that the novel MAA is mycosporine-glycine-alanine, which substitutesl-alanine for thel-serine of shinorine.


2014 ◽  
Vol 81 (5) ◽  
pp. 1765-1774 ◽  
Author(s):  
Bingyue Xin ◽  
Jinshui Zheng ◽  
Ziya Xu ◽  
Xiaoling Song ◽  
Lifang Ruan ◽  
...  

ABSTRACTLantibiotics are ribosomally synthesized peptides that contain multiple posttranslational modifications. Research on lantibiotics has increased recently, mainly due to their broad-spectrum antimicrobial activity, especially against some clinical Gram-positive pathogens. Many reports about various bacteriocins in theBacillus cereusgroup have been published, but few were about lantibiotics. In this study, we identified 101 putative lanthipeptide gene clusters from 77 out of 223 strains of this group, and these gene clusters were further classified into 20 types according to their gene organization and the homologies of their functional genes. Among them, 18 types were novel and have not yet been experimentally verified. Two novel lantibiotics (thuricin 4A-4 and its derivative, thuricin 4A-4D) were identified in the type I-1 lanthipeptide gene cluster and showed activity against all tested Gram-positive bacteria. The mode of action of thuricin 4A-4 was studied, and we found that it acted as a bactericidal compound. The transcriptional analysis of four structural genes (thiA1,thiA2,thiA3, andthiA4) in the thuricin 4A gene cluster showed that only one structural gene,thiA4, showed efficient transcription in the exponential growth phase; the other three structural genes did not. In addition, the putative transmembrane protein ThiI was responsible for thuricin 4A-4 immunity. Genome analysis and functional verification illustrated thatB. cereusgroup strains were a prolific source of novel lantibiotics.


2017 ◽  
Vol 83 (15) ◽  
Author(s):  
Kazuo Kobayashi ◽  
Yu Kanesaki ◽  
Hirofumi Yoshikawa

ABSTRACTA rhizosphere Gram-positive bacterial isolate,Paenibacillussp. NAIST15-1, exhibits intriguing motility behavior on hard agar medium.Paenibacillussp. shows increased transcription of flagellar genes and hyperflagellation when transferred from liquid to solid medium. Hyperflagellated cells form wandering colonies that are capable of moving around on the surface of medium containing ≥1.5% agar. Transposon mutagenesis was used to identify genes critical for motility. In addition to flagellar genes, this mutagenesis identified five nonflagellar structural genes that were important for motility. Of these, the disruption ofdegSU,wsfP, orPBN151_4312resulted in a complete loss of flagellin synthesis. Analysis of flagellar gene promoter activity showed that each mutation severely reduced flagellar gene transcription in a different manner. Flagellar gene transcription was induced in liquid medium by the addition of a viscous agent, Ficoll, or by disruption of flagellar stator genes, indicating that flagellar gene transcription was induced in response to restriction of flagellar rotation. Overexpression of DegSU bypassed the requirement of flagellar rotation restriction for induction of flagellar genes. These results indicate that physical restriction of flagellar rotation by physical contact with the surface of solid medium induces flagellar gene transcription through the activation of DegSU. Further analysis revealed that the same mechanism was conserved inBacillus subtilis. These results demonstrate that flagella act as mechanosensors to control flagellar transcription in Gram-positive bacteria.IMPORTANCEMany bacteria exist on living or nonliving surfaces in nature. Bacteria express distinct behaviors, such as surface motility and biofilm formation, to adapt to surfaces. However, it remains largely unknown how bacteria sense the surfaces on which they sit and how they induce the genes needed for growth on a surface. Swarming motility is flagellum-dependent motility on a surface. The Gram-positive bacteriumPaenibacillussp. exhibits strong swarming motility ability and is capable of moving on 1.5% agar medium. In this study, we showed that the two-component system DegSU was responsible for inducing flagellar genes in response to heavy loads on flagellar rotation inPaenibacillussp. The same mechanism was conserved in a related species,B. subtilis, even though these two bacteria exhibit very different motility behaviors. This study shows that flagellum serves as a sensor for surface contact to induce flagellar gene transcription in these bacteria.


2017 ◽  
Vol 5 (41) ◽  
Author(s):  
Xu Yang ◽  
En Huang ◽  
Mustafa Yesil ◽  
Lingzi Xiaoli ◽  
Edward G. Dudley ◽  
...  

ABSTRACT Brevibacillus laterosporus OSY-I1 is a Gram-positive spore-forming bacterium isolated from soil. The bacterium produces brevibacillin, an antimicrobial lipopeptide effective against several drug-resistant Gram-positive bacteria. Here, we present the draft genome sequence of the strain OSY-I1 and the gene cluster responsible for the biosynthesis of brevibacillin.


2013 ◽  
Vol 79 (21) ◽  
pp. 6737-6746 ◽  
Author(s):  
Hilda Tiricz ◽  
Attila Szűcs ◽  
Attila Farkas ◽  
Bernadett Pap ◽  
Rui M. Lima ◽  
...  

ABSTRACTLeguminous plants establish symbiosis with nitrogen-fixing alpha- and betaproteobacteria, collectively called rhizobia, which provide combined nitrogen to support plant growth. Members of the inverted repeat-lacking clade of legumes impose terminal differentiation on their endosymbiotic bacterium partners with the help of the nodule-specific cysteine-rich (NCR) peptide family composed of close to 600 members. Among the few tested NCR peptides, cationic ones had antirhizobial activity measured by reduction or elimination of the CFU and uptake of the membrane-impermeable dye propidium iodide. Here, the antimicrobial spectrum of two of these peptides, NCR247 and NCR335, was investigated, and their effect on the transcriptome of the natural targetSinorhizobium melilotiwas characterized. Both peptides were able to kill quickly a wide range of Gram-negative and Gram-positive bacteria; however, their spectra were only partially overlapping, and differences were found also in their efficacy on given strains, indicating that the actions of NCR247 and NCR335 might be similar though not identical. Treatment ofS. meliloticultures with either peptide resulted in a quick downregulation of genes involved in basic cellular functions, such as transcription-translation and energy production, as well as upregulation of genes involved in stress and oxidative stress responses and membrane transport. Similar changes provoked mainly in Gram-positive bacteria by antimicrobial agents were coupled with the destruction of membrane potential, indicating that it might also be a common step in the bactericidal actions of NCR247 and NCR335.


2013 ◽  
Vol 80 (3) ◽  
pp. 1062-1071 ◽  
Author(s):  
Jian Wang ◽  
Yong Gao ◽  
Kunling Teng ◽  
Jie Zhang ◽  
Shutao Sun ◽  
...  

ABSTRACTLantibiotics are ribosomally synthesized, posttranslationally modified antimicrobial peptides. Their biosynthesis genes are usually organized in gene clusters, which are mainly found in Gram-positive bacteria, including pathogenic streptococci. Three highly virulentStreptococcus suisserotype 2 strains (98HAH33, 05ZYH33, and SC84) have been shown to contain an 89K pathogenicity island. Here, on these islands, we unveiled and reannotated a putative lantibiotic locus designatedsuiwhich contains a virulence-associated two-component regulator,suiK-suiR. In silicoanalysis revealed that the putative lantibiotic modification genesuiMwas interrupted by a 7.9-kb integron and that other biosynthesis-related genes contained various frameshift mutations. By reconstituting the intactsuiMinEscherichia colitogether with a semi-in vitrobiosynthesis system, a putative lantibiotic named suicin was produced with bactericidal activities against a variety of Gram-positive strains, including pathogenic streptococci and vancomycin-resistant enterococci. Ring topology dissection indicated that the 34-amino-acid lantibiotic contained two methyllanthionine residues and one disulfide bridge, which render suicin in an N-terminal linear and C-terminal globular shape. To confirm the function ofsuiK-suiR, SuiR was overexpressed and purified.In vitroanalysis showed that SuiR could specifically bind to thesuiAgene promoter. Its coexpression withsuiKcould activatesuiAgene promoter inLactococcus lactisNZ9000. Conclusively, we obtained a novel lantibiotic suicin by restoring its production from the remnantsuilocus and demonstrated that virulence-associated SuiK-SuiR regulates its production.


2018 ◽  
Vol 56 (9) ◽  
Author(s):  
Paul A. Granato ◽  
Melissa M. Unz ◽  
Raymond H. Widen ◽  
Suzane Silbert ◽  
Stephen Young ◽  
...  

ABSTRACT The iC-GPC Assay (iCubate, Huntsville, AL) is a qualitative multiplex test for the detection of five of the most common Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Enterococcus faecalis, and Enterococcus faecium) responsible for bacterial bloodstream infections, performed directly from positive blood cultures. The assay also detects the presence of the mecA, vanA, and vanB resistance determinants. This study comparatively evaluated the performance of the iC-GPC Assay against the Verigene Gram-positive blood culture (BC-GP) assay (Luminex Corp., Austin, TX) for 1,134 patient blood culture specimens positive for Gram-positive cocci. The iC-GPC Assay had an overall percent agreement with the BC-GP assay of 95.5%. Discordant specimens were further analyzed by PCR and a bidirectional sequencing method. The results indicate that the iC-GPC Assay together with the iCubate system is an accurate and reliable tool for the detection of the five most common Gram-positive bacteria and their resistance markers responsible for bloodstream infections.


2018 ◽  
Vol 84 (14) ◽  
Author(s):  
Yuto Fukuyama ◽  
Kimiho Omae ◽  
Yasuko Yoneda ◽  
Takashi Yoshida ◽  
Yoshihiko Sako

ABSTRACTCarboxydothermusspecies are some of the most studied thermophilic carboxydotrophs. Their varied carboxydotrophic growth properties suggest distinct strategies for energy conservation via carbon monoxide (CO) metabolism. In this study, we used comparative genome analysis of the genusCarboxydothermusto show variations in the CO dehydrogenase-energy-converting hydrogenase gene cluster, which is responsible for CO metabolism with H2production (hydrogenogenic CO metabolism). Indeed, the ability or inability to produce H2with CO oxidation is explained by the presence or absence of this gene cluster inCarboxydothermus hydrogenoformans,Carboxydothermus islandicus, andCarboxydothermus ferrireducens. Interestingly, despite its hydrogenogenic CO metabolism,Carboxydothermus pertinaxlacks the Ni-CO dehydrogenase catalytic subunit (CooS-I) and its transcriptional regulator-encoding genes in this gene cluster, probably due to inversion. Transcriptional analysis inC. pertinaxshowed that the Ni-CO dehydrogenase gene (cooS-II) and distantly encoded energy-converting-hydrogenase-related genes were remarkably upregulated with 100% CO. In addition, when thiosulfate was available as a terminal electron acceptor in 100% CO, the maximum cell density and maximum specific growth rate ofC. pertinaxwere 3.1-fold and 1.5-fold higher, respectively, than when thiosulfate was absent. The amount of H2produced was only 62% of the amount of CO consumed, less than expected according to hydrogenogenic CO oxidation (CO + H2O → CO2+ H2). Accordingly,C. pertinaxwould couple CO oxidation by Ni-CO dehydrogenase II with simultaneous reduction of not only H2O but also thiosulfate when grown in 100% CO.IMPORTANCEAnaerobic hydrogenogenic carboxydotrophs are thought to fill a vital niche by scavenging potentially toxic CO and producing H2as an available energy source for thermophilic microbes. This hydrogenogenic carboxydotrophy relies on a Ni-CO dehydrogenase-energy-converting hydrogenase gene cluster. This feature is thought to be common to these organisms. However, the hydrogenogenic carboxydotrophCarboxydothermus pertinaxlacks the gene for the Ni-CO dehydrogenase catalytic subunit encoded in the gene cluster. Here, we performed a comparative genome analysis of the genusCarboxydothermus, a transcriptional analysis, and a cultivation study in 100% CO to prove the hydrogenogenic CO metabolism. Results revealed thatC. pertinaxcould couple Ni-CO dehydrogenase II alternatively to the distal energy-converting hydrogenase. Furthermore,C. pertinaxrepresents an example of the functioning of Ni-CO dehydrogenase that does not always correspond to its genomic context, owing to the versatility of CO metabolism and the low redox potential of CO.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Sara Ceballos ◽  
Choon Kim ◽  
Derong Ding ◽  
Shahriar Mobashery ◽  
Mayland Chang ◽  
...  

ABSTRACT The activities of four oxadiazoles were investigated with 210 methicillin-resistant Staphylococcus aureus (MRSA) strains. MIC50 and MIC90 values of 1 to 2 and 4 μg/ml, respectively, were observed. We also evaluated the activity of oxadiazole ND-421 against other staphylococci and enterococci and in the presence of oxacillin for selected MRSA strains. The MIC for ND-421 is lowered severalfold in combination with oxacillin, as they synergize. The MIC90 of ND-421 against vancomycin-resistant enterococci is ≤1 μg/ml.


2019 ◽  
Vol 64 (3) ◽  
Author(s):  
Ian Morrissey ◽  
Stephen Hawser ◽  
Sibylle H. Lob ◽  
James A. Karlowsky ◽  
Matteo Bassetti ◽  
...  

ABSTRACT Eravacycline is a novel, fully synthetic fluorocycline antibiotic being developed for the treatment of serious infections, including those caused by resistant Gram-positive pathogens. Here, we evaluated the in vitro activities of eravacycline and comparator antimicrobial agents against a recent global collection of frequently encountered clinical isolates of Gram-positive bacteria. The CLSI broth microdilution method was used to determine in vitro MIC data for isolates of Enterococcus spp. (n = 2,807), Staphylococcus spp. (n = 4,331), and Streptococcus spp. (n = 3,373) isolated primarily from respiratory, intra-abdominal, urinary, and skin specimens by clinical laboratories in 37 countries on three continents from 2013 to 2017. Susceptibilities were interpreted using both CLSI and EUCAST breakpoints. There were no substantive differences (a >1-doubling-dilution increase or decrease) in eravacycline MIC90 values for different species/organism groups over time or by region. Eravacycline showed MIC50 and MIC90 results of 0.06 and 0.12 μg/ml, respectively, when tested against Staphylococcus aureus, regardless of methicillin susceptibility. The MIC90 values of eravacycline for Staphylococcus epidermidis and Staphylococcus haemolyticus were equal (0.5 μg/ml). The eravacycline MIC90s for Enterococcus faecalis and Enterococcus faecium were 0.06 μg/ml and were within 1 doubling dilution regardless of the vancomycin susceptibility profile. Eravacycline exhibited MIC90 results of ≤0.06 μg/ml when tested against Streptococcus pneumoniae and beta-hemolytic and viridans group streptococcal isolates. In this surveillance study, eravacycline demonstrated potent in vitro activity against frequently isolated clinical isolates of Gram-positive bacteria (Enterococcus, Staphylococcus, and Streptococcus spp.), including isolates collected over a 5-year period (2013 to 2017), underscoring its potential benefit in the treatment of infections caused by common Gram-positive pathogens.


Sign in / Sign up

Export Citation Format

Share Document