scholarly journals An A257V Mutation in the Bacillus subtilis Response Regulator Spo0A Prevents Regulated Expression of Promoters with Low-Consensus Binding Sites

2009 ◽  
Vol 191 (17) ◽  
pp. 5489-5498 ◽  
Author(s):  
Steve D. Seredick ◽  
Barbara M. Seredick ◽  
David Baker ◽  
George B. Spiegelman

ABSTRACT In Bacillus species, the master regulator of sporulation is Spo0A. Spo0A functions by both activating and repressing transcription initiation from target promoters that contain 0A boxes, the binding sites for Spo0A. Several classes of spo0A mutants have been isolated, and the molecular basis for their phenotypes has been determined. However, the molecular basis of the Spo0A(A257V) substitution, representative of an unusual phenotypic class, is not understood. Spo0A(A257V) is unusual in that it abolishes sporulation; in vivo, it fails to activate transcription from key stage II promoters yet retains the ability to repress the abrB promoter. To determine how Spo0A(A257V) retains the ability to repress but not stimulate transcription, we performed a series of in vitro and in vivo assays. We found unexpectedly that the mutant protein both stimulated transcription from the spoIIG promoter and repressed transcription from the abrB promoter, albeit twofold less than the wild type. A DNA binding analysis of Spo0A(A257V) showed that the mutant protein was less able to tolerate alterations in the sequence and arrangement of its DNA binding sites than the wild-type protein. In addition, we found that Spo0A(A257V) could stimulate transcription of a mutant spoIIG promoter in vivo in which low-consensus binding sites were replaced by high-consensus binding sites. We conclude that Spo0A(A257V) is able to bind to and regulate the expression of only genes whose promoters contain high-consensus binding sites and that this effect is sufficient to explain the observed sporulation defect.

2018 ◽  
Vol 115 (16) ◽  
pp. E3692-E3701 ◽  
Author(s):  
Chaitanya Rastogi ◽  
H. Tomas Rube ◽  
Judith F. Kribelbauer ◽  
Justin Crocker ◽  
Ryan E. Loker ◽  
...  

Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes.


2021 ◽  
Author(s):  
Soumen Khan ◽  
Saurabh J. Pradhan ◽  
Guillaume Giraud ◽  
Françoise Bleicher ◽  
Rachel Paul ◽  
...  

All Hox proteins are known to recognize, in vitro, similar DNA-binding sites containing a TAAT core sequence. This poor DNA-binding specificity is in sharp contrast with their specific functions in vivo. Here we report a new binding motif with TAAAT core sequence to which the Hox protein Ultrabithorax (Ubx) binds with higher affinity and specificity. Using transgenic and luciferase assays, we show that this new motif is critical for Ubx-mediated regulation of a target gene in Drosophila melanogaster. Interestingly, this new motif with TAAAT core sequences is not associated with the targets of Ubx in the honeybee, Apis mellifera, wherein hindwings are nearly identical to the forewings. We show that introduction of TAAAT motif in the place of TAAT motif is sufficient to bring an enhancer of a wing-promoting gene of A. mellifera under the regulation of Ubx. Our results, thus, suggest that binding motifs with a TAAAT core sequence may help identify functionally relevant direct targets of Ubx in D. melanogaster and the emergence of these binding sites may be crucial for Hox-mediated morphological changes during insect evolution.


1995 ◽  
Vol 15 (2) ◽  
pp. 861-871 ◽  
Author(s):  
K M Catron ◽  
H Zhang ◽  
S C Marshall ◽  
J A Inostroza ◽  
J M Wilson ◽  
...  

This study investigates the transcriptional properties of Msx-1, a murine homeodomain protein which has been proposed to play a key role in regulating the differentiation and/or proliferation state of specific cell populations during embryogenesis. We show, using basal and activated transcription templates, that Msx-1 is a potent repressor of transcription and can function through both TATA-containing and TATA-less promoters. Moreover, repression in vivo and in vitro occurs in the absence of DNA-binding sites for the Msx-1 homeodomain. Utilizing a series of truncated Msx-1 polypeptides, we show that multiple regions of Msx-1 contribute to repression, and these are rich in alanine, glycine, and proline residues. When fused to a heterologous DNA-binding domain, both N- and C-terminal regions of Msx-1 retain repressor function, which is dependent upon the presence of the heterologous DNA-binding site. Moreover, a polypeptide consisting of the full-length Msx-1 fused to a heterologous DNA-binding domain is a more potent repressor than either the N- or C-terminal regions alone, and this fusion retains the ability to repress transcription in the absence of the heterologous DNA site. We further show that Msx-1 represses transcription in vitro in a purified reconstituted assay system and interacts with protein complexes composed of TBP and TFIIA (DA) and TBP, TFIIA, and TFIIB (DAB) in gel retardation assays, suggesting that the mechanism of repression is mediated through interaction(s) with a component(s) of the core transcription complex. We speculate that the repressor function of Msx-1 is critical for its proposed role in embryogenesis as a regulator of cellular differentiation.


1992 ◽  
Vol 12 (5) ◽  
pp. 2372-2382
Author(s):  
K M Arndt ◽  
S L Ricupero ◽  
D M Eisenmann ◽  
F Winston

A mutation in the gene that encodes Saccharomyces cerevisiae TFIID (SPT15), which was isolated in a selection for mutations that alter transcription in vivo, changes a single amino acid in a highly conserved region of the second direct repeat in TFIID. Among eight independent spt15 mutations, seven cause this same amino acid change, Leu-205 to Phe. The mutant TFIID protein (L205F) binds with greater affinity than that of wild-type TFIID to at least two nonconsensus TATA sites in vitro, showing that the mutant protein has altered DNA binding specificity. Site-directed mutations that change Leu-205 to five different amino acids cause five different phenotypes, demonstrating the importance of this amino acid in vivo. Virtually identical phenotypes were observed when the same amino acid changes were made at the analogous position, Leu-114, in the first repeat of TFIID. Analysis of these mutations and additional mutations in the most conserved regions of the repeats, in conjunction with our DNA binding results, suggests that these regions of the repeats play equivalent roles in TFIID function, possibly in TATA box recognition.


Development ◽  
1990 ◽  
Vol 110 (1) ◽  
pp. 141-149 ◽  
Author(s):  
F. Payre ◽  
S. Noselli ◽  
V. Lefrere ◽  
A. Vincent

Serendipity (sry) beta (beta) and delta (delta) are two finger protein genes resulting from a duplication event. Comparison of their respective protein products shows interspersed blocks of conserved and divergent amino-acid sequences. The most extensively conserved region corresponds to the predicted DNA-binding domain which includes 6 contiguous fingers; no significant sequence conservation is found upstream and downstream of the protein-coding region. We have analysed the evolutionary divergence of the sry beta and delta proteins on two separate levels, their embryonic pattern of expression and their DNA-binding properties in vitro and in vivo. By using specific antibodies and transformant lines containing beta-galactosidase fusion genes, we show that the sry beta and sry delta proteins are maternally inherited and present in embryonic nuclei at the onset of zygotic transcription, suggesting that they are transcription factors involved in this process. Zygotic synthesis of the sry beta protein starts during nuclear division cycles 12–13, prior to cellularisation of the blastoderm, while the zygotic sry delta protein is not detectable before germ band extension (stage 10 embryos). Contrary to sry delta, the zygotic sry beta protein constitutes only a minor fraction of the total embryonic protein. The sry beta and delta proteins made in E. coli bind to DNA, with partly overlapping specificities. Their in vivo patterns of binding to DNA, visualised by immunostaining polytene chromosomes, differ both in the number and position of their binding sites. Thus changes in expression pattern and DNA-binding specificity have contributed to the evolution of the sry beta and delta genes.


1995 ◽  
Vol 15 (3) ◽  
pp. 1405-1421 ◽  
Author(s):  
C C Adams ◽  
J L Workman

To investigate mechanisms by which multiple transcription factors access complex promoters and enhancers within cellular chromatin, we have analyzed the binding of disparate factors to nucleosome cores. We used a purified in vitro system to analyze binding of four activator proteins, two GAL4 derivatives, USF, and NF-kappa B (KBF1), to reconstituted nucleosome cores containing different combinations of binding sites. Here we show that binding of any two or all three of these factors to nucleosomal DNA is inherently cooperative. Thus, the binuclear Zn clusters of GAL4, the helix-loop-helix/basic domains of USF, and the rel domain of NF-kappa B all participated in cooperative nucleosome binding, illustrating that this effect is not restricted to a particular DNA-binding domain. Simultaneous binding by two factors increased the affinity of individual factors for nucleosomal DNA by up to 2 orders of magnitude. Importantly, cooperative binding resulted in efficient nucleosome binding by factors (USF and NF-kappa B) which independently possess little nucleosome-binding ability. The participation of GAL4 derivatives in cooperative nucleosome binding required only DNA-binding and dimerization domains, indicating that disruption of histone-DNA contacts by factor binding was responsible for the increased affinity of additional factors. Cooperative nucleosome binding required sequence-specific binding of all transcription factors, appeared to have spatial constraints, and was independent of the orientation of the binding sites on the nucleosome. These results indicate that cooperative nucleosome binding is a general mechanism that may play a significant role in loading complex enhancer and promoter elements with multiple diverse factors in chromatin and contribute to the generation of threshold responses and transcriptional synergy by multiple activator sites in vivo.


2004 ◽  
Vol 279 (44) ◽  
pp. 45887-45896 ◽  
Author(s):  
Mark J. Demma ◽  
Serena Wong ◽  
Eugene Maxwell ◽  
Bimalendu Dasmahapatra

The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effectivein vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elementsin vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (Bmax) and its affinity (Kd) for DNA. The compound, however, does not affect the affinity (Kdvalue) of wild type p53 for DNA and only increasesBmaxslightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.


2010 ◽  
Vol 11 (1) ◽  
pp. 81 ◽  
Author(s):  
Congmao Wang ◽  
Jie Xu ◽  
Dasheng Zhang ◽  
Zoe A Wilson ◽  
Dabing Zhang

PLoS ONE ◽  
2016 ◽  
Vol 11 (7) ◽  
pp. e0158793 ◽  
Author(s):  
Veronika Papp-Kádár ◽  
Judit Eszter Szabó ◽  
Kinga Nyíri ◽  
Beata G. Vertessy

2007 ◽  
Vol 189 (17) ◽  
pp. 6324-6332 ◽  
Author(s):  
Meropi K. Matta ◽  
Efthimia E. Lioliou ◽  
Cynthia H. Panagiotidis ◽  
Dimitrios A. Kyriakidis ◽  
Christos A. Panagiotidis

ABSTRACT AtoC has a dual function as both an antizyme, the posttranslational inhibitor of polyamine biosynthetic enzymes, and the transcriptional regulator of genes involved in short-chain fatty acid catabolism (the atoDAEB operon). We have previously shown that AtoC is the response regulator of the AtoS-AtoC two-component signal transduction system that activates atoDAEB when Escherichia coli is exposed to acetoacetate. Here, we show that the same cis elements control both promoter inducibility and AtoC binding. Chromatin immunoprecipitation experiments confirmed the acetoacetate-inducible binding of AtoC to the predicted DNA region in vivo. DNase I protection footprinting analysis revealed that AtoC binds two 20-bp stretches, constituting an inverted palindrome, that are located at −146 to −107 relative to the transcription initiation site. Analyses of promoter mutants obtained by in vitro chemical mutagenesis of the atoDAEB promoter verified both the importance of AtoC binding for the inducibility of the promoter by acetoacetate and the σ54 dependence of atoDAEB expression. The integration host factor was also identified as a critical component of the AtoC-mediated induction of atoDAEB.


Sign in / Sign up

Export Citation Format

Share Document