scholarly journals TolC-Dependent Exclusion of Porphyrins in Escherichia coli

2008 ◽  
Vol 190 (18) ◽  
pp. 6228-6233 ◽  
Author(s):  
Ryoko Tatsumi ◽  
Masaaki Wachi

ABSTRACT We found that Escherichia coli tolC mutants showed increased sensitivity to 5-aminolevulinic acid (ALA), a precursor of porphyrins. The tolC mutant cells grown in the presence of ALA showed a reddish brown color under visible light and a strong red fluorescence under near-UV irradiation. Fluorescence spectrometry and high-performance liquid chromatography analysis showed that the tolC mutant cells grown in the presence of ALA accumulated a large amount of coproporphyrin(ogen) intracellularly. In contrast, the wild-type cells produced coproporphyrin extracellularly. The tolC mutant cells grown in the presence of ALA, which were capable of surviving in the dark, were killed by near-UV irradiation, suggesting that the intracellular coproporphyrin(ogen) renders these cells photosensitive. These results suggest that the TolC-dependent efflux system is involved in the exclusion of porphyrin(ogen)s in E. coli.

Microbiology ◽  
2003 ◽  
Vol 149 (7) ◽  
pp. 1763-1770 ◽  
Author(s):  
Ryszard Zielke ◽  
Aleksandra Sikora ◽  
Rafał Dutkiewicz ◽  
Grzegorz Wegrzyn ◽  
Agata Czyż

CgtA is a member of the Obg/Gtp1 subfamily of small GTP-binding proteins. CgtA homologues have been found in various prokaryotic and eukaryotic organisms, ranging from bacteria to humans. Nevertheless, despite the fact that cgtA is an essential gene in most bacterial species, its function in the regulation of cellular processes is largely unknown. Here it has been demonstrated that in two bacterial species, Escherichia coli and Vibrio harveyi, the cgtA gene product enhances survival of cells after UV irradiation. Expression of the cgtA gene was found to be enhanced after UV irradiation of both E. coli and V. harveyi. Moderate overexpression of cgtA resulted in higher UV resistance of E. coli wild-type and dnaQ strains, but not in uvrA, uvrB, umuC and recA mutant hosts. Overexpression of the E. coli recA gene in the V. harveyi cgtA mutant, which is very sensitive to UV light, restored the level of survival of UV-irradiated cells to the levels observed for wild-type bacteria. Moreover, the basal level of the RecA protein was lower in a temperature-sensitive cgtA mutant of E. coli than in the cgtA + strain, and contrary to wild-type bacteria, no significant increase in recA gene expression was observed after UV irradiation of this cgtA mutant. Finally, stimulation of uvrB gene transcription under these conditions was impaired in the V. harveyi cgtA mutant. All these results strongly suggest that the cgtA gene product is involved in DNA repair processes, most probably by stimulation of recA gene expression and resultant activation of RecA-dependent DNA repair pathways.


2007 ◽  
Vol 189 (18) ◽  
pp. 6512-6520 ◽  
Author(s):  
Danièle Joseleau-Petit ◽  
Jean-Claude Liébart ◽  
Juan A. Ayala ◽  
Richard D'Ari

ABSTRACT Growing bacterial L forms are reputed to lack peptidoglycan, although cell division is normally inseparable from septal peptidoglycan synthesis. To explore which cell division functions L forms use, we established a protocol for quantitatively converting a culture of a wild-type Escherichia coli K-12 strain overnight to a growing L-form-like state by use of the β-lactam cefsulodin, a specific inhibitor of penicillin-binding proteins (PBPs) 1A and 1B. In rich hypertonic medium containing cefsulodin, all cells are spherical and osmosensitive, like classical L forms. Surprisingly, however, mutant studies showed that colony formation requires d-glutamate, diaminopimelate, and MurA activity, all of which are specific to peptidoglycan synthesis. High-performance liquid chromatography analysis confirmed that these L-form-like cells contain peptidoglycan, with 7% of the normal amount. Moreover, the β-lactam piperacillin, a specific inhibitor of the cell division protein PBP 3, rapidly blocks the cell division of these L-form-like cells. Similarly, penicillin-induced L-form-like cells, which grow only within the agar layers of rich hypertonic plates, also require d-glutamate, diaminopimelate, and MurA activity. These results strongly suggest that cefsulodin- and penicillin-induced L-form-like cells of E. coli—and possibly all L forms—have residual peptidoglycan synthesis which is essential for their growth, probably being required for cell division.


1983 ◽  
Vol 29 (6) ◽  
pp. 694-699 ◽  
Author(s):  
G. R. Drapeau ◽  
J. P. Chausseau ◽  
F. Gariépy

The properties of a division mutant of Escherichia coli were investigated. At 42 °C, this mutant forms nonseptate, multinucleate, filamentous cells typical of division mutants, and at the permissive temperature, is sensitive to ultraviolet (UV) irradiation. Temperature and UV sensitivities are probably due to a single mutation. The mutant phenotype is dominant to wild type. The mutant cells make DNA nearly as effectively as control cells at 42 °C or following UV irradiation. They exhibit normal host-cell reactivation capacities and can express all manifestations of the SOS response with the exception of Weigle reactivation. The genetic lesion which mediates this pleiotropic effect is located very close to the leu locus of the linkage map.


Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 41-64 ◽  
Author(s):  
Justin Courcelle ◽  
Arkady Khodursky ◽  
Brian Peter ◽  
Patrick O Brown ◽  
Philip C Hanawalt

Abstract The SOS response in UV-irradiated Escherichia coli includes the upregulation of several dozen genes that are negatively regulated by the LexA repressor. Using DNA microarrays containing amplified DNA fragments from 95.5% of all open reading frames identified on the E. coli chromosome, we have examined the changes in gene expression following UV exposure in both wild-type cells and lexA1 mutants, which are unable to induce genes under LexA control. We report here the time courses of expression of the genes surrounding the 26 documented lexA-regulated regions on the E. coli chromosome. We observed 17 additional sites that responded in a lexA-dependent manner and a large number of genes that were upregulated in a lexA-independent manner although upregulation in this manner was generally not more than twofold. In addition, several transcripts were either downregulated or degraded following UV irradiation. These newly identified UV-responsive genes are discussed with respect to their possible roles in cellular recovery following exposure to UV irradiation.


2006 ◽  
Vol 50 (4) ◽  
pp. 1425-1432 ◽  
Author(s):  
Vasanthi Ramachandran ◽  
B. Chandrakala ◽  
Vidya P. Kumar ◽  
Veeraraghavan Usha ◽  
Suresh M. Solapure ◽  
...  

ABSTRACTClass A high-molecular-weight penicillin-binding protein 1a (PBP1a) and PBP1b ofEscherichia colihave both transglycosylase (TG) and transpeptidase (TP) activity. These enzymes are difficult to assay, since their substrates are difficult to prepare. We show the activity of PBP1a or PBP1b can be measured in membranes by cloning the PBP into anE. coli ponB::Spcrstrain. Using this assay, we show that PBP1a is ∼10-fold more sensitive to penicillin than PBP1b and that the 50% inhibitory concentration (IC50) of moenomycin, a TG inhibitor, is ∼10-fold higher in the PBP transformants than in wild-type membranes; this increase in IC50in transformants can be used to test the specificity of test compounds for inhibition of the TG. Alternatively, the coupled TG-TP activity of PBP1b can be directly measured in a two-step microplate assay. In the first step, radiolabeled lipid II, the TG substrate, was made in membranes of theE. coli ponB::Spcrstrain by incubation with the peptidoglycan sugar precursors. In the second step, the TG-TP activity was assayed by adding a source of PBP1b to the membranes. The coupled TG-TP activity converts lipid II to cross-linked peptidoglycan, which was specifically captured by wheat germ agglutinin-coated scintillation proximity beads in the presence of 0.2% Sarkosyl (B. Chandrakala et al., Antimicrob. Agents Chemother.48:30-40, 2004). The TG-TP assay was inhibited by penicillin and moenomycin as expected. Surprisingly, tunicamycin and nisin also inhibited the assay, and paper chromatography analysis revealed that both inhibited the transglycosylase. The assay can be used to screen for novel antibacterial agents.


2005 ◽  
Vol 49 (4) ◽  
pp. 1404-1409 ◽  
Author(s):  
Dorota Korsak ◽  
Sylvia Liebscher ◽  
Waldemar Vollmer

ABSTRACT The antibiotic susceptibilities and capabilities to induce β-lactamases were studied in multiple Escherichia coli murein (peptidoglycan) hydrolase mutants. E. coli mutants lacking either three amidases, three amidases and one lytic transglycosylase, or six lytic transglycosylases showed higher levels of susceptibility to bacitracin, erythromycin, gallidermin, and vancomycin than the wild type. Mutant cells without three amidases lost viability in the presence of vancomycin and gallidermin, whereas the wild type was resistant to both antibiotics. β-Lactamase induction was studied after introduction of a plasmid carrying the ampC and ampR genes. Upon addition of cefoxitin to the growth medium, the wild type as well as a mutant lacking all known amidases and dd-endopeptidases induced β-lactamase, whereas a mutant lacking all known lytic transglycosylases was unable to induce β-lactamase, showing that lytic transglycosylase activity is essential for β-lactamase induction. Consequently, cells lacking lytic transglycosylase activity lysed in the presence of penicillin, despite the presence of the inducible β-lactamase system. We discuss the potential of murein hydrolase inhibitors for antibiotic therapy.


Genetics ◽  
1972 ◽  
Vol 70 (4) ◽  
pp. 495-510
Author(s):  
M Stodolsky ◽  
M Engel Rae ◽  
E Mullenbach

ABSTRACT Escherichia coli with the proA–proB–lac deletion ×111 (Δ111) can be transduced with bacteriophage P1 propagated on a wild-type lac  + donor. Though the donor lac  + genes cannot be integrated by replacement of the recipient Δ111 marker, the transduction process has the characteristics generally associated with generalized transduction of bacterial genes. Transduction does not require P1 helper infection, is stimulated by UV irradiation of transducing particles, and does require homology between the donor lac  + chromosome and the recipient Δ111 chromosome. Among transductants produced through multiple P1 infection, a minority of P1 dl lysogens are present. But the majority of the transductants have unstable lac  + units, designated lac V, which are without detected P1 gene content. LacV is tightly linked to the Δ111 locus. Instability of lac  + is eliminated when a recombination deficiency is introduced through a substitution of recA1 for rec  +. The properties of the Δ111/lacV strains are attributable to a chromosome in which lac  + is situated between units of a genetic duplication beside the Δ111 locus. To explain the formation of partially diploid chromosomes we suggest that chromosome fragment integration is sometimes accomplished through a single aberrant recombination, a fusion of genetically heterologous DNA ends, and a single legitimate crossover.


2020 ◽  
Vol 14 (2) ◽  
pp. 121-133 ◽  
Author(s):  
Maryam Ahankoub ◽  
Gashtasb Mardani ◽  
Payam Ghasemi-Dehkordi ◽  
Ameneh Mehri-Ghahfarrokhi ◽  
Abbas Doosti ◽  
...  

Background: Genetically engineered microorganisms (GEMs) can be used for bioremediation of the biological pollutants into nonhazardous or less-hazardous substances, at lower cost. Polycyclic aromatic hydrocarbons (PAHs) are one of these contaminants that associated with a risk of human cancer development. Genetically engineered E. coli that encoded catechol 2,3- dioxygenase (C230) was created and investigated its ability to biodecomposition of phenanthrene and pyrene in spiked soil using high-performance liquid chromatography (HPLC) measurement. We revised patents documents relating to the use of GEMs for bioremediation. This approach have already been done in others studies although using other genes codifying for same catechol degradation approach. Objective: In this study, we investigated biodecomposition of phenanthrene and pyrene by a genetically engineered Escherichia coli. Methods: Briefly, following the cloning of C230 gene (nahH) into pUC18 vector and transformation into E. coli Top10F, the complementary tests, including catalase, oxidase and PCR were used as on isolated bacteria from spiked soil. Results: The results of HPLC measurement showed that in spiked soil containing engineered E. coli, biodegradation of phenanthrene and pyrene comparing to autoclaved soil that inoculated by wild type of E. coli and normal soil group with natural microbial flora, were statistically significant (p<0.05). Moreover, catalase test was positive while the oxidase tests were negative. Conclusion: These findings indicated that genetically manipulated E. coli can provide an effective clean-up process on PAH compounds and it is useful for bioremediation of environmental pollution with petrochemical products.


1997 ◽  
Vol 41 (3) ◽  
pp. 504-510 ◽  
Author(s):  
A Severin ◽  
E Severina ◽  
A Tomasz

Subinhibitory concentrations of clavulanate caused premature induction of stationary-phase autolysis, sensitization to lysozyme, and reductions in the MICs of deoxycholate and penicillin for Streptococcus pneumoniae. In the range of clavulanate concentrations producing these effects, this beta-lactam compound was selectively bound to PBP 3. Cell walls isolated from pneumococci grown in the presence of clavulanate showed increased sensitivity to the hydrolytic action of purified pneumococcal autolysin in vitro. High-performance liquid chromatography analysis of the peptidoglycan isolated from the clavulanate-grown cells showed major qualitative and quantitative changes in stem peptide composition, the most striking feature of which was the accumulation of peptide species carrying intact D-alanyl-D-alanine residues at the carboxy termini. The altered biological and biochemical properties of the clavulanate-grown pneumococci appear to be the consequences of suppressed D,D-carboxypeptidase activity.


2003 ◽  
Vol 71 (6) ◽  
pp. 3088-3096 ◽  
Author(s):  
Peter Redford ◽  
Paula L. Roesch ◽  
Rodney A. Welch

ABSTRACT Extraintestinal Escherichia coli strains cause meningitis, sepsis, urinary tract infection, and other infections outside the bowel. We examined here extraintestinal E. coli strain CFT073 by differential fluorescence induction. Pools of CFT073 clones carrying a CFT073 genomic fragment library in a promoterless gfp vector were inoculated intraperitoneally into mice; bacteria were recovered by lavage 6 h later and then subjected to fluorescence-activated cell sorting. Eleven promoters were found to be active in the mouse but not in Luria-Bertani (LB) broth culture. Three are linked to genes for enterobactin, aerobactin, and yersiniabactin. Three others are linked to the metabolic genes metA, gltB, and sucA, and another was linked to iha, a possible adhesin. Three lie before open reading frames of unknown function. One promoter is associated with degS, an inner membrane protease. Mutants of the in vivo-induced loci were tested in competition with the wild type in mouse peritonitis. Of the mutants tested, only CFT073 degS was found to be attenuated in peritoneal and in urinary tract infection, with virulence restored by complementation. CFT073 degS shows growth similar to that of the wild type at 37°C but is impaired at 43°C or in 3% ethanol LB broth at 37°C. Compared to the wild type, the mutant shows similar serum survival, motility, hemolysis, erythrocyte agglutination, and tolerance to oxidative stress. It also has the same lipopolysaccharide appearance on a silver-stained gel. The basis for the virulence attenuation is unclear, but because DegS is needed for σE activity, our findings implicate σE and its regulon in E. coli extraintestinal pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document