scholarly journals Conformation of the AcrB Multidrug Efflux Pump in Mutants of the Putative Proton Relay Pathway

2006 ◽  
Vol 188 (20) ◽  
pp. 7290-7296 ◽  
Author(s):  
Chih-Chia Su ◽  
Ming Li ◽  
Ruoyu Gu ◽  
Yumiko Takatsuka ◽  
Gerry McDermott ◽  
...  

ABSTRACT We previously reported the X-ray structures of wild-type Escherichia coli AcrB, a proton motive force-dependent multidrug efflux pump, and its N109A mutant. These structures presumably reflect the resting state of AcrB, which can bind drugs. After ligand binding, a proton may bind to an acidic residue(s) in the transmembrane domain, i.e., Asp407 or Asp408, within the putative network of electrostatically interacting residues, which also include Lys940 and Thr978, and this may initiate a series of conformational changes that result in drug expulsion. Herein we report the X-ray structures of four AcrB mutants, the D407A, D408A, K940A, and T978A mutants, in which the structure of this tight electrostatic network is expected to become disrupted. These mutant proteins revealed remarkably similar conformations, which show striking differences from the previously known conformations of the wild-type protein. For example, the loop containing Phe386 and Phe388, which play a major role in the initial binding of substrates in the central cavity, becomes prominently extended into the center of the cavity, such that binding of large substrate molecules may become difficult. We believe that this new conformation may mimic, at least partially, one of the transient conformations of the transporter during the transport cycle.

2008 ◽  
Vol 191 (6) ◽  
pp. 1729-1737 ◽  
Author(s):  
Yumiko Takatsuka ◽  
Hiroshi Nikaido

ABSTRACT Escherichia coli AcrB is a proton motive force-dependent multidrug efflux transporter that recognizes multiple toxic chemicals having diverse structures. Recent crystallographic studies of the asymmetric trimer of AcrB suggest that each protomer in the trimeric assembly goes through a cycle of conformational changes during drug export (functional rotation hypothesis). In this study, we devised a way to test this hypothesis by creating a giant gene in which three acrB sequences were connected together through short linker sequences. The “linked-trimer” AcrB was expressed well in the inner membrane fraction of ΔacrB ΔrecA strains, as a large protein of ∼300 kDa which migrated at the same rate as the wild-type AcrB trimer in native polyacrylamide gel electrophoresis. The strain expressing the linked-trimer AcrB showed resistance to some toxic compounds that was sometimes even higher than that of the cells expressing the monomeric AcrB, indicating that the linked trimer functions well in intact cells. When we inactivated only one of the three protomeric units in the linked trimer, either with mutations in the salt bridge/H-bonding network (proton relay network) in the transmembrane domain or by disulfide cross-linking of the external cleft in the periplasmic domain, the entire trimeric complex was inactivated. However, some residual activity was seen, presumably as a result of random recombination of monomeric fragments (produced by protease cleavage or by transcriptional/translational truncation). These observations provide strong biochemical evidence for the functionally rotating mechanism of AcrB pump action. The linked trimer will be useful for further biochemical studies of mechanisms of transport in the future.


2006 ◽  
Vol 188 (20) ◽  
pp. 7284-7289 ◽  
Author(s):  
Yumiko Takatsuka ◽  
Hiroshi Nikaido

ABSTRACT Escherichia coli AcrB is a multidrug efflux transporter that recognizes multiple toxic chemicals and expels them from cells. It is a proton antiporter belonging to the resistance-nodulation-division (RND) superfamily. Asp407, Asp408, Lys940, and Arg971 in transmembrane (TM) helices of this transporter have been identified as essential amino acid residues that probably function as components of the proton relay system. In this study, we identified a novel residue in TM helix 11, Thr978, as an essential residue by alanine scanning mutagenesis. Its location close to Asp407 suggests that it is also a component of the proton translocation pathway, a prediction confirmed by the similar conformations adopted by T978A, D407A, D408A, and K940A mutant proteins (see the accompanying paper). Sequence alignment of 566 RND transporters showed that this threonine residue is conserved in about 96% of cases. Our results suggest the hypotheses that Thr978 functions through hydrogen bonding with Asp407 and that protonation of the latter alters the salt bridging and hydrogen bonding pattern in the proton relay network, thus initiating a series of conformational changes that ultimately result in drug extrusion.


2003 ◽  
Vol 47 (2) ◽  
pp. 665-669 ◽  
Author(s):  
Melissa A. Visalli ◽  
Ellen Murphy ◽  
Steven J. Projan ◽  
Patricia A. Bradford

ABSTRACT Tigecycline has good broad-spectrum activity against many gram-positive and gram-negative pathogens with the notable exception of the Proteeae. A study was performed to identify the mechanism responsible for the reduced susceptibility to tigecycline in Proteus mirabilis. Two independent transposon insertion mutants of P. mirabilis that had 16-fold-increased susceptibility to tigecycline were mapped to the acrB gene homolog of the Escherichia coli AcrRAB efflux system. Wild-type levels of decreased susceptibility to tigecycline were restored to the insertion mutants by complementation with a clone containing a PCR-derived fragment from the parental wild-type acrRAB efflux gene cluster. The AcrAB transport system appears to be associated with the intrinsic reduced susceptibility to tigecycline in P. mirabilis.


2002 ◽  
Vol 46 (11) ◽  
pp. 3386-3393 ◽  
Author(s):  
Patricia Sánchez ◽  
Ana Alonso ◽  
Jose L. Martinez

ABSTRACT We report on the cloning of the gene smeT, which encodes the transcriptional regulator of the Stenotrophomonas maltophilia efflux pump SmeDEF. SmeT belongs to the TetR and AcrR family of transcriptional regulators. The smeT gene is located upstream from the structural operon of the pump genes smeDEF and is divergently transcribed from those genes. Experiments with S. maltophilia and the heterologous host Escherichia coli have demonstrated that SmeT is a transcriptional repressor. S1 nuclease mapping has demonstrated that expression of smeT is driven by a single promoter lying close to the 5′ end of the gene and that expression of smeDEF is driven by an unique promoter that overlaps with promoter PsmeT. The level of expression of smeT is higher in smeDEF-overproducing S. maltophilia strain D457R, which suggests that SmeT represses its own expression. Band-shifting assays have shown that wild-type strain S. maltophilia D457 contains a cellular factor(s) capable of binding to the intergenic smeT-smeD region. That cellular factor(s) was absent from smeDEF-overproducing S. maltophilia strain D457R. The sequence of smeT from D457R showed a point mutation that led to a Leu166Gln change within the SmeT protein. This change allowed overexpression of both smeDEF and smeT in D457R. It was noteworthy that expression of wild-type SmeT did not fully complement the smeT mutation in D457R. This suggests that the wild-type protein is not dominant over the mutant SmeT.


2014 ◽  
Vol 58 (9) ◽  
pp. 5102-5110 ◽  
Author(s):  
Bernardo Ramírez-Zavala ◽  
Selene Mogavero ◽  
Eva Schöller ◽  
Christoph Sasse ◽  
P. David Rogers ◽  
...  

ABSTRACTOverexpression of the multidrug efflux pumpMDR1is one mechanism by which the pathogenic yeastCandida albicansdevelops resistance to the antifungal drug fluconazole. The constitutive upregulation ofMDR1in fluconazole-resistant, clinicalC. albicansisolates is caused by gain-of-function mutations in the zinc cluster transcription factor Mrr1. It has been suggested that Mrr1 activatesMDR1transcription by recruiting Ada2, a subunit of the SAGA/ADA coactivator complex. However,MDR1expression is also regulated by the bZIP transcription factor Cap1, which mediates the oxidative stress response inC. albicans. Here, we show that a hyperactive Mrr1 containing a gain-of-function mutation promotesMDR1overexpression independently of Ada2. In contrast, a C-terminally truncated, hyperactive Cap1 causedMDR1overexpression in a wild-type strain but only weakly in mutants lackingADA2. In the presence of benomyl or H2O2, compounds that induceMDR1expression in an Mrr1- and Cap1-dependent fashion,MDR1was upregulated with the same efficiency in wild-type andada2Δ cells. These results indicate that Cap1, but not Mrr1, recruits Ada2 to theMDR1promoter to induce the expression of this multidrug efflux pump and that Ada2 is not required forMDR1overexpression in fluconazole-resistantC. albicansstrains containing gain-of-function mutations in Mrr1.


2000 ◽  
Vol 13 (5) ◽  
pp. 572-577 ◽  
Author(s):  
Ramón González-Pasayo ◽  
Esperanza Martínez-Romero

Multidrug efflux pumps of bacteria are involved in the resistance to various antibiotics and toxic compounds. In Rhizobium etli, a mutualistic symbiont of Phaseolus vulgaris (bean), genes resembling multidrug efflux pump genes were identified and designated rmrA and rmrB. rmrA was obtained after the screening of transposon-generated fusions that are inducible by bean-root released flavonoids. The predicted gene products of rmrAB shared significant homology to membrane fusion and major facilitator proteins, respectively. Mutants of rmrA formed on average 40% less nodules in bean, while mutants of rmrA and rmrB had enhanced sensitivity to phytoalexins, flavonoids, and salicylic acid, compared with the wild-type strain. Multidrug resistance genes emrAB from Escherichia coli complemented an rmrA mutant from R. etli for resistance to high concentrations of naringenin.


2002 ◽  
Vol 46 (7) ◽  
pp. 2124-2131 ◽  
Author(s):  
Jun Lin ◽  
Linda Overbye Michel ◽  
Qijing Zhang

ABSTRACT Campylobacter jejuni, a gram-negative organism causing gastroenteritis in humans, is increasingly resistant to antibiotics. However, little is known about the drug efflux mechanisms in this pathogen. Here we characterized an efflux pump encoded by a three-gene operon (designated cmeABC) that contributes to multidrug resistance in C. jejuni 81-176. CmeABC shares significant sequence and structural homology with known tripartite multidrug efflux pumps in other gram-negative bacteria, and it consists of a periplasmic fusion protein (CmeA), an inner membrane efflux transporter belonging to the resistance-nodulation-cell division superfamily (CmeB), and an outer membrane protein (CmeC). Immunoblotting using CmeABC-specific antibodies demonstrated that cmeABC was expressed in wild-type 81-176; however, an isogenic mutant (9B6) with a transposon insertion in the cmeB gene showed impaired production of CmeB and CmeC. Compared to wild-type 81-176, 9B6 showed a 2- to 4,000-fold decrease in resistance to a range of antibiotics, heavy metals, bile salts, and other antimicrobial agents. Accumulation assays demonstrated that significantly more ethidium bromide and ciprofloxacin accumulated in mutant 9B6 than in wild-type 81-176. Addition of carbonyl cyanide m-chlorophenylhydrazone, an efflux pump inhibitor, increased the accumulation of ciprofloxacin in wild-type 81-176 to the level of mutant 9B6. PCR and immunoblotting analysis also showed that cmeABC was broadly distributed in various C. jejuni isolates and constitutively expressed in wild-type strains. Together, these findings formally establish that CmeABC functions as a tripartite multidrug efflux pump that contributes to the intrinsic resistance of C. jejuni to a broad range of structurally unrelated antimicrobial agents.


1998 ◽  
Vol 180 (17) ◽  
pp. 4686-4692 ◽  
Author(s):  
Hiroshi Nikaido ◽  
Marina Basina ◽  
Vy Nguyen ◽  
Emiko Y. Rosenberg

ABSTRACT We found that the previously reported SS-B drug-supersusceptible mutant of Salmonella typhimurium (S. Sukupolvi, M. Vaara, I. M. Helander, P. Viljanen, and P. H. Mäkelä, J. Bacteriol. 159:704–712, 1984) had a mutation in the acrAB operon. Comparison of this mutant with its parent strain and with an AcrAB-overproducing strain showed that the activity of the AcrAB efflux pump often produced significant resistance to β-lactam antibiotics in the complete absence of β-lactamase. The effect of AcrAB activity on resistance was more pronounced with agents containing more lipophilic side chains, suggesting that such compounds were better substrates for this pump. This correlation is consistent with the hypothesis that only those molecules that become at least partially partitioned into the lipid bilayer of the cytoplasmic membrane are captured by the AcrAB pump. According to this mechanism, the pump successfully excretes even those β-lactams that fail to traverse the cytoplasmic membrane, because these compounds are likely to become partitioned into the outer leaflet of the bilayer. Even the compounds with lipophilic side chains were shown to penetrate across the outer membrane relatively rapidly, if the pump was inactivated genetically or physiologically. The exclusion of such compounds, exemplified by nafcillin, from cells of the wild-type S. typhimuriumwas previously interpreted as the result of poor diffusion across the outer membrane (H. Nikaido, Biochim. Biophys. Acta 433:118–132, 1976), but it is now recognized as the consequence of efficient pumping out of entering antibiotics by the active efflux process.


Sign in / Sign up

Export Citation Format

Share Document