scholarly journals Evidence that Human Chlamydia pneumoniae Was Zoonotically Acquired

2009 ◽  
Vol 191 (23) ◽  
pp. 7225-7233 ◽  
Author(s):  
G. S. A. Myers ◽  
S. A. Mathews ◽  
M. Eppinger ◽  
C. Mitchell ◽  
K. K. O'Brien ◽  
...  

ABSTRACT Zoonotic infections are a growing threat to global health. Chlamydia pneumoniae is a major human pathogen that is widespread in human populations, causing acute respiratory disease, and has been associated with chronic disease. C. pneumoniae was first identified solely in human populations; however, its host range now includes other mammals, marsupials, amphibians, and reptiles. Australian koalas (Phascolarctos cinereus) are widely infected with two species of Chlamydia, C. pecorum and C. pneumoniae. Transmission of C. pneumoniae between animals and humans has not been reported; however, two other chlamydial species, C. psittaci and C. abortus, are known zoonotic pathogens. We have sequenced the 1,241,024-bp chromosome and a 7.5-kb cryptic chlamydial plasmid of the koala strain of C. pneumoniae (LPCoLN) using the whole-genome shotgun method. Comparative genomic analysis, including pseudogene and single-nucleotide polymorphism (SNP) distribution, and phylogenetic analysis of conserved genes and SNPs against the human isolates of C. pneumoniae show that the LPCoLN isolate is basal to human isolates. Thus, we propose based on compelling genomic and phylogenetic evidence that humans were originally infected zoonotically by an animal isolate(s) of C. pneumoniae which adapted to humans primarily through the processes of gene decay and plasmid loss, to the point where the animal reservoir is no longer required for transmission.

2020 ◽  
Author(s):  
He Zhang ◽  
Yang Xie

AbstractStart-gain mutations can introduce novel start codons and generate novel coding sequences that may affect the function of genes. In this study, we systematically investigated the novel start codons that were either polymorphic or fixed in the human genomes. 829 polymorphic start-gain SNVs were identified in the human populations, and the novel start codons introduced by these SNVs have significantly higher activity in translation initiation. Some of these start-gain SNVs were reported to be associated with phenotypes and diseases in previous studies. By comparative genomic analysis, we found 26 human-specific start codons that were fixed after the divergence between the human and chimpanzee, and high-level translation initiation activity was observed on them. The negative selection signal was detected in the novel coding sequences introduced by these human-specific start codons, indicating the important function of these novel coding sequences. This study reveals start-gain mutations are keeping appearing in the human genomes during the evolution and may be important sources altering the function of genes which may further affect the phenotypes or cause diseases.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1063
Author(s):  
Vincent G. Martinson

While the majority of symbiosis research is focused on bacteria, microbial eukaryotes play important roles in the microbiota and as pathogens, especially the incredibly diverse Fungi kingdom. The recent emergence of widespread pathogens in wildlife (bats, amphibians, snakes) and multidrug-resistant opportunists in human populations (Candida auris) has highlighted the importance of better understanding animal–fungus interactions. Regardless of their prominence there are few animal–fungus symbiosis models, but modern technological advances are allowing researchers to utilize novel organisms and systems. Here, I review a forgotten system of animal–fungus interactions: the beetle–fungus symbioses of Drugstore and Cigarette beetles with their symbiont Symbiotaphrina. As pioneering systems for the study of mutualistic symbioses, they were heavily researched between 1920 and 1970, but have received only sporadic attention in the past 40 years. Several features make them unique research organisms, including (1) the symbiont is both extracellular and intracellular during the life cycle of the host, and (2) both beetle and fungus can be cultured in isolation. Specifically, fungal symbionts intracellularly infect cells in the larval and adult beetle gut, while accessory glands in adult females harbor extracellular fungi. In this way, research on the microbiota, pathogenesis/infection, and mutualism can be performed. Furthermore, these beetles are economically important stored-product pests found worldwide. In addition to providing a historical perspective of the research undertaken and an overview of beetle biology and their symbiosis with Symbiotaphrina, I performed two analyses on publicly available genomic data. First, in a preliminary comparative genomic analysis of the fungal symbionts, I found striking differences in the pathways for the biosynthesis of two B vitamins important for the host beetle, thiamine and biotin. Second, I estimated the most recent common ancestor for Drugstore and Cigarette beetles at 8.8–13.5 Mya using sequence divergence (CO1 gene). Together, these analyses demonstrate that modern methods and data (genomics, transcriptomes, etc.) have great potential to transform these beetle–fungus systems into model systems again.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natalya Yutin ◽  
Sean Benler ◽  
Sergei A. Shmakov ◽  
Yuri I. Wolf ◽  
Igor Tolstoy ◽  
...  

AbstractCrAssphage is the most abundant human-associated virus and the founding member of a large group of bacteriophages, discovered in animal-associated and environmental metagenomes, that infect bacteria of the phylum Bacteroidetes. We analyze 4907 Circular Metagenome Assembled Genomes (cMAGs) of putative viruses from human gut microbiomes and identify nearly 600 genomes of crAss-like phages that account for nearly 87% of the DNA reads mapped to these cMAGs. Phylogenetic analysis of conserved genes demonstrates the monophyly of crAss-like phages, a putative virus order, and of 5 branches, potential families within that order, two of which have not been identified previously. The phage genomes in one of these families are almost twofold larger than the crAssphage genome (145-192 kilobases), with high density of self-splicing introns and inteins. Many crAss-like phages encode suppressor tRNAs that enable read-through of UGA or UAG stop-codons, mostly, in late phage genes. A distinct feature of the crAss-like phages is the recurrent switch of the phage DNA polymerase type between A and B families. Thus, comparative genomic analysis of the expanded assemblage of crAss-like phages reveals aspects of genome architecture and expression as well as phage biology that were not apparent from the previous work on phage genomics.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10478
Author(s):  
Laura M. Arias-Agudelo ◽  
Gisela Garcia-Montoya ◽  
Felipe Cabarcas ◽  
Ana L. Galvan-Diaz ◽  
Juan F. Alzate

Cryptosporidium parasites are ubiquitous and can infect a broad range of vertebrates and are considered the most frequent protozoa associated with waterborne parasitic outbreaks. The intestine is the target of three of the species most frequently found in humans: C. hominis, C. parvum, and. C. meleagridis. Despite the recent advance in genome sequencing projects for this apicomplexan, a broad genomic comparison including the three species most prevalent in humans have not been published so far. In this work, we downloaded raw NGS data, assembled it under normalized conditions, and compared 23 publicly available genomes of C. hominis, C. parvum, and C. meleagridis. Although few genomes showed highly fragmented assemblies, most of them had less than 500 scaffolds and mean coverage that ranged between 35X and 511X. Synonymous single nucleotide variants were the most common in C. hominis and C. meleagridis, while in C. parvum, they accounted for around 50% of the SNV observed. Furthermore, deleterious nucleotide substitutions common to all three species were more common in genes associated with DNA repair, recombination, and chromosome-associated proteins. Indel events were observed in the 23 studied isolates that spanned up to 500 bases. The highest number of deletions was observed in C. meleagridis, followed by C. hominis, with more than 60 species-specific deletions found in some isolates of these two species. Although several genes with indel events have been partially annotated, most of them remain to encode uncharacterized proteins.


2015 ◽  
Vol 53 (11) ◽  
pp. 3492-3500 ◽  
Author(s):  
Qinning Wang ◽  
Nadine Holmes ◽  
Elena Martinez ◽  
Peter Howard ◽  
Grant Hill-Cawthorne ◽  
...  

The control of food-borne outbreaks caused byListeria monocytogenesin humans relies on the timely identification of food or environmental sources and the differentiation of outbreak-related isolates from unrelated ones. This study illustrates the utility of whole-genome sequencing for examining the link between clinical and environmental isolates ofL. monocytogenesassociated with an outbreak of hospital-acquired listeriosis in Sydney, Australia. Comparative genomic analysis confirmed an epidemiological link between the three clinical and two environmental isolates. Single nucleotide polymorphism (SNP) analysis showed that only two SNPs separated the three human outbreak isolates, which differed by 19 to 20 SNPs from the environmental isolates and 71 to >10,000 SNPs from sporadicL. monocytogenesisolates. The chromosomes of all human outbreak isolates and the two suspected environmental isolates were syntenic. In contrast to the genomes of background sporadic isolates, all epidemiologically linked isolates contained two novel prophages and a previously unreported clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) locus subtype sequence. The mobile genetic element (MGE) profile of these isolates was distinct from that of the other serotype 1/2b reference strains and sporadic isolates. The identification of SNPs and clonally distinctive MGEs strengthened evidence to distinguish outbreak-related isolates ofL. monocytogenesfrom cocirculating endemic strains.


Genomics ◽  
2015 ◽  
Vol 106 (6) ◽  
pp. 373-383 ◽  
Author(s):  
Eileen Roulis ◽  
Nathan L. Bachmann ◽  
Garry S.A. Myers ◽  
Wilhelmina Huston ◽  
James Summersgill ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 133
Author(s):  
Kathleen Klaper ◽  
Sebastian Wendt ◽  
Christoph Lübbert ◽  
Norman Lippmann ◽  
Yvonne Pfeifer ◽  
...  

Hypervirulent Klebsiella pneumoniae (hvKp) is a novel pathotype that has been rarely described in Europe. This study characterizes a hvKp isolate that caused a community-acquired infection. The hypermucoviscous Klebsiella pneumoniae (K. pneumoniae) strain 18-0005 was obtained from a German patient with tonsillopharyngitis in 2017. Antibiotic susceptibility testing was performed and the genome was sequenced by Illumina and Nanopore technology. Whole genome data were analyzed by conducting core genome multilocus sequence typing (cgMLST) and single nucleotide polymorphism (SNP) analysis. Virulence genes were predicted by applying Kleborate. Phenotypic and whole genome analyses revealed a high similarity of the study isolate 18-0005 to the recently reported antibiotic-susceptible hvKp isolate SB5881 from France and the “ancestral” strain Kp52.145; both were assigned to the ST66-K2 lineage. Comparative genomic analysis of the three plasmids showed that the 18-0005 plasmid II differs from SB5881 plasmid II by an additional 3 kb integrated fragment of plasmid I. Our findings demonstrate the genetic flexibility of hvKp and the occurrence of a strain of the clonal group CG66-K2 in Germany. Hence, it emphasizes the need to improve clinical awareness and infection monitoring of hvKp.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhenya Li ◽  
Yingxin Wang ◽  
Yanyan Zhang ◽  
Xibiao Tang ◽  
Xiangru Wang ◽  
...  

Mycoplasma hyopneumoniae causes swine respiratory disease worldwide. Due to the difficulty of isolating and cultivating M. hyopneumoniae, very few attenuated strains have been successfully isolated, which hampers the development of attenuated vaccines. In order to produce an attenuated M. hyopneumoniae strain, we used the highly virulent M. hyopneumoniae strain ES-2, which was serially passaged in vitro 200 times to produce the attenuated strain ES-2L, and its virulence was evidenced to be low in an animal experiment. In order to elucidate the mechanisms underlying virulence attenuation, we performed whole-genome sequencing of both strains and conducted comparative genomic analyses of strain ES-2 and its attenuated form ES-2L. Strain ES-2L showed three large fragment deletion regions including a total of 18 deleted genes, compared with strain ES-2. Analysis of single-nucleotide polymorphisms (SNPs) and indels indicated that 22 dels were located in 19 predicted coding sequences. In addition to these indels, 348 single-nucleotide variations (SNVs) were identified between strains ES-2L and ES-2. These SNVs mapped to 99 genes where they appeared to induce amino acid substitutions and translation stops. The deleted genes and SNVs may be associated with decreased virulence of strain ES-2L. Our work provides a foundation for further examining virulence factors of M. hyopneumoniae and for the development of attenuated vaccines.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Ana C. Reis ◽  
Boris A. Kolvenbach ◽  
Mohamed Chami ◽  
Luís Gales ◽  
Conceição Egas ◽  
...  

Abstract Background Microbial communities recurrently establish metabolic associations resulting in increased fitness and ability to perform complex tasks, such as xenobiotic degradation. In a previous study, we have described a sulfonamide-degrading consortium consisting of a novel low-abundant actinobacterium, named strain GP, and Achromobacter denitrificans PR1. However, we found that strain GP was unable to grow independently and could not be further purified. Results Previous studies suggested that strain GP might represent a new putative species within the Leucobacter genus (16S rRNA gene similarity < 97%). In this study, we found that average nucleotide identity (ANI) with other Leucobacter spp. ranged between 76.8 and 82.1%, further corroborating the affiliation of strain GP to a new provisional species. The average amino acid identity (AAI) and percentage of conserved genes (POCP) values were near the lower edge of the genus delimitation thresholds (65 and 55%, respectively). Phylogenetic analysis of core genes between strain GP and Leucobacter spp. corroborated these findings. Comparative genomic analysis indicates that strain GP may have lost genes related to tetrapyrrole biosynthesis and thiol transporters, both crucial for the correct assembly of cytochromes and aerobic growth. However, supplying exogenous heme and catalase was insufficient to abolish the dependent phenotype. The actinobacterium harbors at least two copies of a novel genetic element containing a sulfonamide monooxygenase (sadA) flanked by a single IS1380 family transposase. Additionally, two homologs of sadB (4-aminophenol monooxygenase) were identified in the metagenome-assembled draft genome of strain GP, but these were not located in the vicinity of sadA nor of mobile or integrative elements. Conclusions Comparative genomics of the genus Leucobacter suggested the absence of some genes encoding for important metabolic traits in strain GP. Nevertheless, although media and culture conditions were tailored to supply its potential metabolic needs, these conditions were insufficient to isolate the PR1-dependent actinobacterium further. This study gives important insights regarding strain GP metabolism; however, gene expression and functional studies are necessary to characterize and further isolate strain GP. Based on our data, we propose to classify strain GP in a provisional new species within the genus Leucobacter, ‘Candidatus Leucobacter sulfamidivorax‘.


Sign in / Sign up

Export Citation Format

Share Document