scholarly journals Mutations in PneumococcalcpsEGenerated viaIn VitroSerial Passaging Reveal a Potential Mechanism of Reduced Encapsulation Utilized by a Conjunctival Isolate

2015 ◽  
Vol 197 (10) ◽  
pp. 1781-1791 ◽  
Author(s):  
Mara G. Shainheit ◽  
Michael D. Valentino ◽  
Michael S. Gilmore ◽  
Andrew Camilli

ABSTRACTThe polysaccharide capsule ofStreptococcus pneumoniaeis required for nasopharyngeal colonization and for invasive disease in the lungs, blood, and meninges. In contrast, the vast majority of conjunctival isolates are acapsular. The first serotype-specific gene in the capsule operon,cpsE, encodes the initiating glycosyltransferase and is one of the few serotype-specific genes that can tolerate null mutations. This report characterizes a spontaneously arising TIGR4 mutant exhibiting a reduced capsule, caused by a 6-nucleotide duplication incpsEwhich results in duplication of Ala and Ile at positions 45 and 46. This strain (AI45dup) possessed more exposed phosphorylcholine and was hypersusceptible to C3 complement deposition compared to the wild type. Accordingly, the mutant was significantly better at forming abiotic biofilms and binding epithelial cellsin vitrobut was avirulent in a sepsis model.In vitroserial passaging of the wild-type strain failed to reproduce the AI45dup mutation but instead led to a variety of mutants with reduced capsule harboring single nucleotide polymorphisms (SNPs) incpsE. A single passage in the sepsis model after high-dose inoculation readily yielded revertants of AI45dup with restored wild-type capsule level, but the majority of SNP alleles ofcpsEcould not revert, suppress, or bypass. Analysis ofcpsEin conjunctival isolates revealed a strain with a single missense mutation at amino acid position 377, which was responsible for reduced encapsulation. This study supports the hypothesis that spontaneous, nonreverting mutations incpsEserve as a form of adaptive mutation by providing a selective advantage toS. pneumoniaein niches where expression of capsule is detrimental.IMPORTANCEWhile the capsule ofStreptococcus pneumoniaeis required for colonization and invasive disease, most conjunctival isolates are acapsular by virtue of deletion of the entire capsular operon. We show that spontaneous acapsular mutants isolatedin vitroharbor mostly nonrevertible single nucleotide polymorphism (SNP) null mutations incpsE, encoding the initiating glycosyltransferase. From a small collection of acapsular conjunctival isolates, we identified one strain with a complete capsular operon but containing a SNP incpsEthat we show is responsible for the acapsular phenotype. We propose that acapsular conjunctival isolates may arise initially from such nonreverting SNP null mutations incpsE, which can be followed later by deletion of portions or all of thecpsoperon.

2013 ◽  
Vol 58 (3) ◽  
pp. 1671-1677 ◽  
Author(s):  
Dora E. Wiskirchen ◽  
Patrice Nordmann ◽  
Jared L. Crandon ◽  
David P. Nicolau

ABSTRACTDoripenem and ertapenem have demonstrated efficacy against several NDM-1-producing isolatesin vivo, despite having high MICs. In this study, we sought to further characterize the efficacy profiles of humanized regimens of standard (500 mg given every 8 h) and high-dose, prolonged infusion of doripenem (2 g given every 8 h, 4-h infusion) and 1 g of ertapenem given intravenously every 24 h and the comparator regimens of ceftazidime at 2 g given every 8 h (2-h infusion), levofloxacin at 500 mg every 24 h, and aztreonam at 2 g every 6 h (1-h infusion) against a wider range of isolates in a murine thigh infection model. An isogenic wild-type strain and NDM-1-producingKlebsiella pneumoniaeand eight clinical NDM-1-producing members of the familyEnterobacteriaceaewere tested in immunocompetent- and neutropenic-mouse models. The wild-type strain was susceptible to all of the agents, while the isogenic NDM-1-producing strain was resistant to ceftazidime, doripenem, and ertapenem. Clinical NDM-1-producing strains were resistant to nearly all five of the agents (two were susceptible to levofloxacin). In immunocompetent mice, all of the agents produced ≥1-log10CFU reductions of the isogenic wild-type and NDM-1-producing strains after 24 h. Minimal efficacy of ceftazidime, aztreonam, and levofloxacin against the clinical NDM-1-producing strains was observed. However, despitein vitroresistance, ≥1-log10CFU reductions of six of eight clinical strains were achieved with high-dose, prolonged infusion of doripenem and ertapenem. Slight enhancements of doripenem activity over the standard doses were obtained with high-dose, prolonged infusion for three of the four isolates tested. Similar efficacy observations were noted in neutropenic mice. These data suggest that carbapenems are a viable treatment option for infections caused by NDM-1-producingEnterobacteriaceae.


2014 ◽  
Vol 82 (11) ◽  
pp. 4607-4619 ◽  
Author(s):  
Melinda M. Pettigrew ◽  
Laura R. Marks ◽  
Yong Kong ◽  
Janneane F. Gent ◽  
Hazeline Roche-Hakansson ◽  
...  

ABSTRACTStreptococcus pneumoniaeis a leading cause of infectious disease globally. Nasopharyngeal colonization occurs in biofilms and precedes infection. Prior studies have indicated that biofilm-derived pneumococci are avirulent. However, influenza A virus (IAV) infection releases virulent pneumococci from biofilmsin vitroandin vivo. Triggers of dispersal include IAV-induced changes in the nasopharynx, such as increased temperature (fever) and extracellular ATP (tissue damage). We used whole-transcriptome shotgun sequencing (RNA-seq) to compare theS. pneumoniaetranscriptome in biofilms, bacteria dispersed from biofilms after exposure to IAV, febrile-range temperature, or ATP, and planktonic cells grown at 37°C. Compared with biofilm bacteria, actively dispersedS. pneumoniae, which were more virulent in invasive disease, upregulated genes involved in carbohydrate metabolism. Enzymatic assays for ATP and lactate production confirmed that dispersed pneumococci exhibited increased metabolism compared to those in biofilms. Dispersed pneumococci also upregulated genes associated with production of bacteriocins and downregulated colonization-associated genes related to competence, fratricide, and the transparent colony phenotype. IAV had the largest impact on the pneumococcal transcriptome. Similar transcriptional differences were also observed when actively dispersed bacteria were compared with avirulent planktonic bacteria. Our data demonstrate complex changes in the pneumococcal transcriptome in response to IAV-induced changes in the environment. Our data suggest that disease is caused by pneumococci that are primed to move to tissue sites with altered nutrient availability and to protect themselves from the nasopharyngeal microflora and host immune response. These data help explain pneumococcal virulence after IAV infection and have important implications for studies ofS. pneumoniaepathogenesis.


2015 ◽  
Vol 84 (1) ◽  
pp. 286-292 ◽  
Author(s):  
Vanessa Sofia Terra ◽  
Xiangyun Zhi ◽  
Hasan F. Kahya ◽  
Peter W. Andrew ◽  
Hasan Yesilkaya

For the generation of energy, the important human pathogenStreptococcus pneumoniaerelies on host-derived sugars, including β-glucoside analogs. The catabolism of these nutrients involves the action of 6-phospho-β-glucosidase to convert them into usable monosaccharaides. In this study, we characterized a 6-phospho-β-glucosidase (BglA3) encoded by SPD_0247. We found that this enzyme has a cell membrane localization and is active only against a phosphorylated substrate. A mutated pneumococcal ΔSPD0247 strain had reduced 6-phospho-glucosidase activity and was attenuated in growth on cellobiose and hyaluronic acid compared to the growth of wild-type D39. ΔSPD0247-infected mice survived significantly longer than the wild-type-infected cohort, and the colony counts of the mutant were lower than those of the wild type in the lungs. The expression of SPD_0247 inS. pneumoniaeharvested from infected tissues was significantly increased relative to its expressionin vitroon glucose. Additionally, ΔSPD0247 is severely impaired in its attachment to an abiotic surface. These results indicate the importance of β-glucoside metabolism in pneumococcal survival and virulence.


2013 ◽  
Vol 57 (8) ◽  
pp. 3936-3940 ◽  
Author(s):  
Dora E. Wiskirchen ◽  
Patrice Nordmann ◽  
Jared L. Crandon ◽  
David P. Nicolau

ABSTRACTEnterobacteriaceaeproducing the novel carbapenemase New Delhi metallo-β-lactamase (NDM-1) are emerging worldwide. While these organisms often display high levels ofin vitroresistance to multiple antibiotics,in vivoefficacy data are lacking. Here, the activities of humanized ertapenem and doripenem exposures were characterized against a wild-typeK. pneumoniaeand its derived isogenic strains harboring either an NDM-1 or KPC-2 plasmid in immunocompetent mice. In addition, four clinical isolates expressing NDM-1 were evaluated. Human-simulated regimens of ertapenem at 1 g every 24 h and high-dose, prolonged infusion of doripenem at 2 g every 8 h as a 4-h infusion were evaluated over 24 h, and efficacy was determined by the change in bacterial density compared to that in 24-h growth controls. CFU reductions in bacterial density of greater than 1 log unit were observed against the wild-type strain as well as the derived isogenic NDM-1 strain, while no reduction was observed against the derived KPC-2 strain. Postexposure MICs confirmed thein vitromaintenance of the ertapenem resistance marker in both the NDM-1 and KPC-2 strains. Similar to the case for the isogenically derived NDM-1 strain, bacterial density was reduced at 24 h against all four clinical NDM-1 isolates showing variable levels of MICs for carbapenems, with near-maximal activity of both agents occurring when the doripenem MIC was ≤8 μg/ml. While carbapenem monotherapy does not appear to be an option against KPC-based infections, these data suggest that carbapenem monotherapy may be a viable option for treating NDM-1-producingEnterobacteriaceaeunder certain conditions, and this warrants furtherin vivoexploration.


2011 ◽  
Vol 79 (10) ◽  
pp. 4122-4130 ◽  
Author(s):  
Richard M. Harvey ◽  
Abiodun D. Ogunniyi ◽  
Austen Y. Chen ◽  
James C. Paton

ABSTRACTStreptococcus pneumoniaeis a leading cause of human diseases such as pneumonia, bacteremia, meningitis, and otitis media. Pneumolysin (Ply) is an important virulence factor ofS. pneumoniaeand a promising future vaccine target. However, the expansion of clones carryingplyalleles with reduced hemolytic activity has been observed in serotypes associated with outbreaks of invasive disease and includes an allele identified in a highly virulent serotype 1 isolate (ply4496). The virulence of Ply-deficient andplyallelic-replacement derivatives ofS. pneumoniaeD39 was compared with that of wild-type D39. In addition, the protective immunogenicity of Ply against pneumococci with low versus high hemolytic activity was also investigated. Replacement of D39plywithply4496 resulted in a small but statistically significant reduction of virulence. However, both native Ply- and Ply4496-expressing strains were significantly more virulent than a Ply-deficient mutant. While the numbers of both Ply- and Ply4496-expressing isolate cells were higher in the blood than the numbers of Ply-deficient mutant cells, the growth of the Ply4496-expressing strain was superior to that of the wild type in the first 15 h postchallenge. Ply immunization provided protection regardless of the hemolytic activity of the challenge strain. In summary, we show that low-hemolytic-activity Ply alleles contribute to systemic virulence and may provide a survival advantage in the blood. Moreover, pneumococci expressing such alleles remain vulnerable to Ply-based vaccines.


2011 ◽  
Vol 80 (2) ◽  
pp. 643-650 ◽  
Author(s):  
David M. Vu ◽  
Jutamas Shaughnessy ◽  
Lisa A. Lewis ◽  
Sanjay Ram ◽  
Peter A. Rice ◽  
...  

ABSTRACTNeisseria meningitidisbinds the complement downregulating protein, factor H (fH), which enables the organism to evade host defenses. Two fH ligands, fHbp and NspA, are known to bind specifically to human fH. We developed a human fH transgenic infant rat model to investigate the effect of human fH on meningococcal bacteremia. At 18 h after intraperitoneal challenge with 560 CFU of group B strain H44/76, all 19 human fH-positive rats had positive blood cultures compared to 0 of 7 human fH-negative control littermates (P< 0.0001). Human fH-positive infant rats also developed bacteremia after challenge with isogenic mutants of H44/76 in which genes encoding fHbp and NspA (ΔfHbp ΔNspA mutant) or the lipooligosaccharide sialyltransferase (Δlstmutant) had been inactivated. A fully encapsulated ΔfHbp ΔNspA Δlstmutant unable to sialylate lipooligosaccharide or bind human fH via the known fH ligands did not cause bacteremia, which argued against global susceptibility to bacteremia resulting from random integration of the transgene into the rat genome.In vitro, the wild-type and ΔfHbp ΔNspA mutant strains were killed by as little as 20% wild-type infant rat serum. The addition of 3 μg of human fH/ml permitted survival of the wild-type strain in up to 60% infant rat serum, whereas ≥33 μg of human fH/ml was required to rescue the ΔfHbp ΔNspA mutant. The ability of meningococci lacking expression of fHbp and NspA to cause invasive disease in human fH transgenic rats and to survive in wild-type infant rat serum supplemented with human fH indicates an additional human fH-dependent mechanism of evasion of innate immunity.


2020 ◽  
Vol 65 (1) ◽  
pp. e01948-20
Author(s):  
Dalin Rifat ◽  
Si-Yang Li ◽  
Thomas Ioerger ◽  
Keshav Shah ◽  
Jean-Philippe Lanoix ◽  
...  

ABSTRACTThe nitroimidazole prodrugs delamanid and pretomanid comprise one of only two new antimicrobial classes approved to treat tuberculosis (TB) in 50 years. Prior in vitro studies suggest a relatively low barrier to nitroimidazole resistance in Mycobacterium tuberculosis, but clinical evidence is limited to date. We selected pretomanid-resistant M. tuberculosis mutants in two mouse models of TB using a range of pretomanid doses. The frequency of spontaneous resistance was approximately 10−5 CFU. Whole-genome sequencing of 161 resistant isolates from 47 mice revealed 99 unique mutations, of which 91% occurred in 1 of 5 genes previously associated with nitroimidazole activation and resistance, namely, fbiC (56%), fbiA (15%), ddn (12%), fgd (4%), and fbiB (4%). Nearly all mutations were unique to a single mouse and not previously identified. The remaining 9% of resistant mutants harbored mutations in Rv2983 (fbiD), a gene not previously associated with nitroimidazole resistance but recently shown to be a guanylyltransferase necessary for cofactor F420 synthesis. Most mutants exhibited high-level resistance to pretomanid and delamanid, although Rv2983 and fbiB mutants exhibited high-level pretomanid resistance but relatively small changes in delamanid susceptibility. Complementing an Rv2983 mutant with wild-type Rv2983 restored susceptibility to pretomanid and delamanid. By quantifying intracellular F420 and its precursor Fo in overexpressing and loss-of-function mutants, we provide further evidence that Rv2983 is necessary for F420 biosynthesis. Finally, Rv2983 mutants and other F420H2-deficient mutants displayed hypersusceptibility to some antibiotics and to concentrations of malachite green found in solid media used to isolate and propagate mycobacteria from clinical samples.


2011 ◽  
Vol 56 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Marisa H. Miceli ◽  
Stella M. Bernardo ◽  
T. S. Neil Ku ◽  
Carla Walraven ◽  
Samuel A. Lee

ABSTRACTInfections and thromboses are the most common complications associated with central venous catheters. Suggested strategies for prevention and management of these complications include the use of heparin-coated catheters, heparin locks, and antimicrobial lock therapy. However, the effects of heparin onCandida albicansbiofilms and planktonic cells have not been previously studied. Therefore, we sought to determine thein vitroeffect of a heparin sodium preparation (HP) on biofilms and planktonic cells ofC. albicans. Because HP contains two preservatives, methyl paraben (MP) and propyl paraben (PP), these compounds and heparin sodium without preservatives (Pure-H) were also tested individually. The metabolic activity of the mature biofilm after treatment was assessed using XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction and microscopy. Pure-H, MP, and PP caused up to 75, 85, and 60% reductions of metabolic activity of the mature preformedC. albicansbiofilms, respectively. Maximal efficacy against the mature biofilm was observed with HP (up to 90%) compared to the individual compounds (P< 0.0001). Pure-H, MP, and PP each inhibitedC. albicansbiofilm formation up to 90%. A complete inhibition of biofilm formation was observed with HP at 5,000 U/ml and higher. When tested against planktonic cells, each compound inhibited growth in a dose-dependent manner. These data indicated that HP, MP, PP, and Pure-H havein vitroantifungal activity againstC. albicansmature biofilms, formation of biofilms, and planktonic cells. Investigation of high-dose heparin-based strategies (e.g., heparin locks) in combination with traditional antifungal agents for the treatment and/or prevention ofC. albicansbiofilms is warranted.


2011 ◽  
Vol 55 (12) ◽  
pp. 5480-5484 ◽  
Author(s):  
Yuhan Chang ◽  
Wen-Chien Chen ◽  
Pang-Hsin Hsieh ◽  
Dave W. Chen ◽  
Mel S. Lee ◽  
...  

ABSTRACTThe objective of this study was to evaluate the antibacterial effects of polymethylmethacrylate (PMMA) bone cements loaded with daptomycin, vancomycin, and teicoplanin against methicillin-susceptibleStaphylococcus aureus(MSSA), methicillin-resistantStaphylococcus aureus(MRSA), and vancomycin-intermediateStaphylococcus aureus(VISA) strains. Standardized cement specimens made from 40 g PMMA loaded with 1 g (low-dose), 4 g (middle-dose) or 8 g (high-dose) antibiotics were tested for elution characteristics and antibacterial activities. The patterns of release of antibiotics from the cement specimens were evaluated usingin vitrobroth elution assay with high-performance liquid chromatography. The activities of broth elution fluid against differentStaphylococcus aureusstrains (MSSA, MRSA, and VISA) were then determined. The antibacterial activities of all the tested antibiotics were maintained after being mixed with PMMA. The cements loaded with higher dosages of antibiotics showed longer elution periods. Regardless of the antibiotic loading dose, the teicoplanin-loaded cements showed better elution efficacy and provided longer inhibitory periods against MSSA, MRSA, and VISA than cements loaded with the same dose of vancomycin or daptomycin. Regarding the choice of antibiotics for cement loading in the treatment ofStaphylococcus aureusinfection, teicoplanin was superior in terms of antibacterial effects.


2012 ◽  
Vol 56 (8) ◽  
pp. 4146-4153 ◽  
Author(s):  
Zaid Al-Nakeeb ◽  
Ajay Sudan ◽  
Adam R. Jeans ◽  
Lea Gregson ◽  
Joanne Goodwin ◽  
...  

ABSTRACTItraconazole is used for the prevention and treatment of infections caused byAspergillus fumigatus. An understanding of the pharmacodynamics of itraconazole against wild-type and triazole-resistant strains provides a basis for innovative therapeutic strategies for treatment of infections. Anin vitromodel of the human alveolus was used to define the pharmacodynamics of itraconazole. Galactomannan was used as a biomarker. The effect of systemic and airway administration of itraconazole was assessed, as was a combination of itraconazole administered to the airway and systemically administered 5FC. Systemically administered itraconazole against the wild type induced a concentration-dependent decline in galactomannan in the alveolar and endothelial compartments. No exposure-response relationships were apparent for the L98H, M220T, or G138C mutant. The administration of itraconazole to the airway resulted in comparable exposure-response relationships to those observed with systemic therapy. This was achieved without detectable concentrations of drug within the endothelial compartment. The airway administration of itraconazole resulted in a definite but submaximal effect in the endothelial compartment against the L98H mutant. The administration of 5FC resulted in a concentration-dependent decline in galactomannan in both the alveolar and endothelial compartments. The combination of airway administration of itraconazole and systemically administered 5FC was additive. Systemic administration of itraconazole is ineffective against Cyp51 mutants. The airway administration of itraconazole is effective for the treatment of wild-type strains and appears to have some activity against the L98H mutants. Combination with other agents, such as 5FC, may enable the attainment of near-maximal antifungal activity.


Sign in / Sign up

Export Citation Format

Share Document