Dry Etching of PZT Films in an Ecr Plasma

1993 ◽  
Vol 310 ◽  
Author(s):  
Barbara Charlet ◽  
Kerrie E. Davies

AbstractPZT films were etched in an ECR microwave reactor with RF polarization.The etch rate was evaluated using various gas mixtures including combinations of two of the following: C12, NF3, SF6 and HBr. The etch rate was measured as a function of the percentage of one gas in the mixture. Other parameters investigated included gas pressure, bias voltage on the electrode and substrate temperature.Results of the effect of temperature show that etch rates are higher on high temperature substrates than on low temperature substrates. A mixture of C12 and SF2 provided a PZT etch rate of 750 Å / min on a substrate, at approximately 100 °C. We evaluated the resultant etch profile and surface roughness

1969 ◽  
Vol 72 (3) ◽  
pp. 423-435 ◽  
Author(s):  
R. Q. Cannell

SUMMARYControlled-environment experiments showed that development of the coleoptile node tiller (T1) was suppressed much more than that of the tiller appearing in the axil of the first true leaf (T2) by high temperature (24/15 °C; 19/10 °C; 10/6 °C), by reduced photoperiod (16 h; 12·5 h) or by low light intensity (1100 ft-c; 1000 ft-c), but minimally in the newest variety, Deba Abed. Unlike previous field experiments, the T1 tiller appeared on more Spratt Archer than Maris Badger plants. Maris Badger plants produced more T1 tillers in a high-low temperature regime (19/10 °C; 10/6 °C) than in continuous low temperature (10/6 °C). In a field experiment T1 tiller number (and yield), but not the number of other major shoots, were severely reduced by late sowing of Spratt Archer, progressively reduced in Maris Badger, but minimally in Deba Abed. This seemed to be associated with higher temperatures at later sowings.


1943 ◽  
Vol 21c (8) ◽  
pp. 235-248 ◽  
Author(s):  
A. A. Hildebrand ◽  
L. W. Koch

During the summer of 1942 sugar beets growing in an experimental plot at the Harrow laboratory were destroyed by a root rot of a type that apparently has been reported only once previously on this host in North America. Wilting of the foliage first attracts attention to affected plants, the roots of which show, externally, grayish-brown discoloured areas and, internally, fairly sharply-delimited, grayish to coffee-coloured lesions, affected tissues being more or less spongy in consistency. The causal organism, found to be a wound parasite, has been identified as Rhizopus arrhizus Fischer. The effect of temperature on the growth in culture and on the pathogenicity of this fungus and of representatives of the species, R. oryzae and R. nigricans, has been studied. It has been found that R. arrhizus and R. oryzae are relatively high temperature organisms, showing optimum growth at about 34° to 36 °C., and each capable of infecting and destroying artificially injured sugar beets most rapidly between 30° and 40 °C. R. nigricans, also a wound parasite is, on the other hand, a relatively low temperature organism showing optimum growth in culture at about 24° and displaying highest infection capability at about 14° to 16 °C.


2012 ◽  
Vol 706-709 ◽  
pp. 768-773
Author(s):  
Masahiro Nishida ◽  
Koichi Hayashi ◽  
Junichi Nakagawa ◽  
Yoshitaka Ito

The influence of temperature on crater formation and ejecta composition in thick aluminum alloy targets were investigated for impact velocities ranging from approximately 1.5 to 3.5 km/s using a two-stage light-gas gun. The diameter and depth of the crater increased with increasing temperature. The ejecta size at low temperature was slightly smaller than that at high temperature and room temperature. Temperature did not affect the size ratio of ejecta. The scatter diameter of the ejecta at high temperature was slightly smaller than those at low and room temperatures.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2416
Author(s):  
Nnaemeka Emmanuel Okpala ◽  
Mouloumdema Pouwedeou Potcho ◽  
Muhammad Imran ◽  
Tianyue An ◽  
Gegen Bao ◽  
...  

Rice (Oryza sativa L.) is mainly grouped into indica and japonica varieties. The aim of this study was to investigate the effect of temperature on cooked rice elongation, cooked rice expansion, and rice fragrance. This study was conducted in three growth temperature chambers with indica cultivar Basmati 385 (B385) and japonica cultivar Yunjingyou (YJY). Grains of B385 grown in low-temperature regimes had the highest cooked rice elongation and expansion, whereas the grains of YJY grown in high-temperature regimes had the highest cooked rice elongation and expansion. Starch granules of B385 grown in low-temperature regimes were more compact and bigger, compared to grains grown in medium- and high-temperature regimes. Conversely, the starch granules of YJY grown in high-temperature regimes were more compact and bigger, compared to those grown in medium- and low-temperature regimes. Metabolomic analyses showed that temperature affected the rice metabolome and revealed that cyclohexanol could be responsible for the differences observed in cooked rice elongation and expansion percentage. However, in both B385 and YJY, grains from low-temperature regimes had the highest 2-AP content and the lowest expression levels of the badh2 gene. The findings of this study will be useful to rice breeders and producers.


Author(s):  
Kai Wei ◽  
Zi-xuan Liu ◽  
Ying-chun Liang ◽  
Ping Wang

To consider the rail pads of thermoplastic polyurethane elastomer (TPE), chloroprene rubber (CR), and ethylene propylene diene monomer (EPDM) that are usually used in the Chinese subway as test subjects, their static stiffness at temperatures of −40℃ to 70℃ was measured by a universal testing machine equipped with a temperature control box. Then, the influence of the temperature-dependent stiffness of the rail pads on the vertical vehicle-track coupled vibrations was investigated with application of a vehicle-track coupled dynamic model. It was found that the static stiffness of these rail pads exhibits a nonlinear variation with temperature. Their static stiffness is considerably sensitive to temperatures below 20℃, when the CR rail pad is the most sensitive. At temperatures above 20℃, their static stiffness slightly alters with increasing temperature. The temperature-dependent stiffness of these rail pads mainly affects the vertical vibrations of the vehicle system above the one-third octave center frequency of 31.5 Hz and the vertical rail vibrations near the center frequency of 63 Hz. Moreover, the influence of the low-temperature stiffness of rail pads at −40℃ to 20℃ is far greater than the effect of the high-temperature stiffness of rail pads at 20–70℃. Thus, TPE, CR, and EPDM rail pads have excellent high-temperature stability and adverse low-temperature sensibility.


2017 ◽  
Vol 5 (01) ◽  
Author(s):  
Sanjive Shukla ◽  
Richa Shukla ◽  
Sandeep Shukla ◽  
Sareef Ahamad ◽  
Anand Mishra

Charomatophores are colour bearing cells, responsible for colouration and colour changes in animals specially in freshwater Crustaceans. As animal’s integument comes in direct contact with the environment therefore they may provide foremost information of the changes in surroundings. Freshwater prawns, M. lamarrei were subjected to low (200C ± 20C), normal (260C ± 20C) and high temperature (350C ± 20C) showed remarkable changes in colouration, chromatophore number and structure. Animals became dark coloured at low temperature while lighter in colouration at high temperature in comparison to the animals kept at normal temperature. Most of the chromatophores were in stellate and punctate stage in low and high temperature respectively in comparison to reticulate stage at normal temperature. Mechanism of colour change as well as importance of colour in marketing value of freshwater prawns has been discussed.


2012 ◽  
Vol 2012 (HITEC) ◽  
pp. 000354-000360
Author(s):  
James Galipeau ◽  
George Slama

Environments prone to vibration and shocks can cause premature failure in small wire-wound transformers due to cracked cores and broken wires. These problems are only exacerbated by temperatures exceeding 200 °C where the heat causes organic compounds to age rapidly. As more electronics are used in harsh, high temperature environments, high reliability, compact transformers for use in power, filtering, and isolation applications are needed. To address this need monolithic low-temperature co-fired ceramic transformers were developed. In this work transformers were made from a low-temperature, co-fire compatible, ferrite with a Curie temperature of 350 °C. The transformers were first subjected to a 2,000 hour life test at 250 °C in which the transformer was used to charge a load capacitor once every two seconds. The inductance, resistance, core loss, and saturation flux density of the transformers were measured at various temperatures. Additional testing focused on the effect of temperature on the device's frequency profile and performance changes under thermal cycling.


1996 ◽  
Vol 34 (7-8) ◽  
pp. 61-68 ◽  
Author(s):  
Y. Takamatsu ◽  
O. Nishimura ◽  
Y. Inamori ◽  
R. Sudo ◽  
M. Matsumura

Microcosm systems consisting of producer, decomposer and predator were employed to assess the effect of surfactants (LAS and soap) on an aquatic ecosystem at various temperatures. At all test temperatures (10, 20, 25 and 30°C), stable ecosystems were formed with regard to the biomass and species composition in flasks. In the stationary phase, temperature dependency of ATP was observed and the biodegradation rate of the surfactants in microcosm system at low temperature were slower than that at high temperature. Cyclidium glaucoma, Philodina sp. and Aeolosoma hemprichi as predator were more influenced by surfactants at low temperature. No observed effect concentration (NOEC) of LAS was less than 0.5mg·1−1 at 10°C, less than 1.5mg·1−1 at 20, 25°C and less than 2.5mg·1−1 at 30°C. NOEC of soap was less than 10mg·1−1 at 10°C, less than 30mg·1−1 at 20, 25°C. It was found that biodegradability of surfactants differed with temperature, which changed the effects of surfactants on microorganisms.


2016 ◽  
Vol 78 (6-6) ◽  
Author(s):  
Zakaria Hamdi ◽  
Mariyamni Awang

A set of slimtube experiments is designed and presented to study the effect of cold temperature CO2 on recovery factor in reservoirs with high temperature. The comparison of the results indicates the positive effect of temperature on recovery trend in early stage as well as ultimate recovery in different injection pressures. The approach is based on a long slimtube to show the effect of temperature on the recovery. The study considers different temperatures and pressures of injection and reservoir allowing both miscible and immiscible flooding of CO2. Using non-isothermal conditions, the results show that, lowering temperature of injection can yield in higher recovery in early stage significantly. Also, considering ultimate recovery, it is observed that low temperature CO2 injection into high temperature reservoir can result in slightly higher recovery factor than isothermal injection. The reason for recovery increase is mainly due to elimination of the interfacial tension between CO2 and reservoir fluids especially near the injection point. Another finding is that the minimum miscibility pressures is lowered by means of lowering the temperature of injection which is again caused by elimination of interfacial tension between CO2 and oil. This is important because forming a single phase can increase the ability of CO2 to extract different components of the crude oil as well as lowering viscosity of the mixture, resulting in a better sweep efficiency. It appears that using liquid CO2 in high temperature reservoirs can be a promising method for better oil recovery in high temperature reservoirs. 


1977 ◽  
Vol 109 (2) ◽  
pp. 165-169 ◽  
Author(s):  
R. D. McMullen ◽  
C. Jong

AbstractAt constant temperatures between 10.0° and 32.2°C with 16 h photoperiod development of eggs and nymphs was slowest at 10.0° (61.8 days av.) and most rapid at 26.7°C (27.0 days av.). Mortality of eggs and nymphs was moderate (43.7%) at 10.0°, least (24.2%) at 21.1°, and 100% at 32.2°C. Between 15.6° and 35.0°C, 16 h photoperiod, fecundity of winter form adults was greatest (486.3 eggs av) at 15.6° and lowest (0.0 eggs) at 35.0°C. For summer form adults fecundity was moderate (212.4 eggs av.) at 15.6°, maximum (444.9 and 447.3 eggs av., respectively) at 21.1° and 26.7°C, and least (2.8 eggs av.) at 35.0°C. Longevity of male and female winter and summer forms was greatest at the low temperature and least at the high temperature. These data are discussed with relation to field observations of natural pear psylla populations and control programs.


Sign in / Sign up

Export Citation Format

Share Document