scholarly journals Identification of Metal Ligands in theClostridium histolyticum ColH Collagenase

1999 ◽  
Vol 181 (9) ◽  
pp. 2816-2822 ◽  
Author(s):  
Chang-Min Jung ◽  
Osamu Matsushita ◽  
Seiichi Katayama ◽  
Junzaburo Minami ◽  
Jun Sakurai ◽  
...  

ABSTRACT A Clostridium histolyticum 116-kDa collagenase has an H415EXXH motif but not the third zinc ligand, as found in already characterized zinc metalloproteinases. To identify its catalytic site, we mutated the codons corresponding to the three conserved residues in the motif to other amino acid residues. The mutation affecting His415 or His419 abolished catalytic activity and zinc binding, while that affecting Glu416 did the former but not the latter. These results suggest that the motif forms the catalytic site. We also mutated the codons corresponding to other amino acid residues that are likely zinc ligands. The mutation affecting Glu447 decreased markedly both the enzymatic activity and the zinc content, while that affecting Glu446 or Glu451 had smaller effects on activity and zinc binding. These mutations caused a decrease ink cat but no significant change inKm . These results are consistent with the hypothesis that Glu447 is the third zinc ligand. The spacing of the three zinc ligands is the same in all known clostridial collagenases but not in other known gluzincins, indicating that they form a new gluzincin subfamily. The effects of mutations affecting Glu446 and Glu451 suggest that the two residues are also involved in catalysis, possibly through an interaction with the two zinc-binding histidine residues.

2001 ◽  
Vol 204 (1) ◽  
pp. 141-146 ◽  
Author(s):  
Chi Hung Chua ◽  
Yongmei Feng ◽  
Chew Chieng Yeo ◽  
Hoon Eng Khoo ◽  
Chit Laa Poh

2013 ◽  
Vol 98 (4) ◽  
pp. 1641-1649 ◽  
Author(s):  
Wenna Bao ◽  
Haifeng Pan ◽  
Zhenhong Zhang ◽  
Yongqing Cheng ◽  
Zhipeng Xie ◽  
...  

2020 ◽  
Author(s):  
Kangle Niu ◽  
Zhengyao Liu ◽  
Yuhui Feng ◽  
Tianlong Gao ◽  
Zhenzhen Wang ◽  
...  

<p>Oligosaccharides have important therapeutic applications. A useful route for oligosaccharides synthesis, especially rare disaccharides, is reverse hydrolysis by <i>β</i>-glucosidase. However, the low conversion efficiency of disaccharides from monosaccharides limits its large-scale production because the equilibrium is biased in the direction of hydrolysis. Based on the analysis of the docking results, we hypothesized that the hydropathy index of key amino acid residues in the catalytic site is closely related with disaccharide synthesis and more hydrophilic residues located in the catalytic site would enhance reverse hydrolysis activity. In this study, positive variants<i> Tr</i>Cel1b<sup>I177S</sup>, <i>Tr</i>Cel1b<sup>I177S/I174S</sup>, and <i>Tr</i>Cel1b<sup>I177S/I174S/W173H</sup>, and one negative variant <i>Tr</i>Cel1b<sup>N240I</sup> were designed according to the <u>H</u>ydropathy <u>I</u>ndex <u>F</u>or <u>E</u>nzyme <u>A</u>ctivity (HIFEA) strategy. The reverse hydrolysis with <i>Tr</i>Cel1b<sup>I177S/I174S/W173H </sup>was accelerated and then the maximum total production (<a>195.8 mg/ml/mg enzyme</a>) of the synthesized disaccharides was increased 3.5-fold compared to that of wildtype. On the contrary, <a><i>Tr</i>Cel1b</a><sup>N240I</sup> lost reverse hydrolysis activity. The results demonstrate that<a> </a><a>the average hydropathy index</a> of <a>the key amino acid residues </a>in the catalytic site of<i> Tr</i>Cel1b is an important factor for the synthesis of laminaribiose, sophorose, and cellobiose. The HIFEA strategy provides a new perspective for the rational design of <i>β</i>-glucosidases used for the synthesis of oligosaccharides.</p>


2018 ◽  
Vol 2 (5) ◽  
pp. 681-686 ◽  
Author(s):  
Jaime Andrés Rivas-Pardo

Titin — the largest protein in the human body — spans half of the muscle sarcomere from the Z-disk to the M-band through a single polypeptide chain. More than 30 000 amino acid residues coded from a single gene (TTN, in humans Q8WZ42) form a long filamentous protein organized in individual globular domains concatenated in tandem. Owing to its location and close interaction with the other muscle filaments, titin is considered the third filament of muscle, after the thick-myosin and the thin-actin filaments.


2010 ◽  
Vol 432 (3) ◽  
pp. 557-566 ◽  
Author(s):  
Emily R. Slepkov ◽  
Alan Pavinski Bitar ◽  
Hélène Marquis

The intracellular bacterial pathogen Listeria monocytogenes secretes a broad-range phospholipase C enzyme called PC-PLC (phosphatidylcholine phospholipase C) whose compartmentalization and enzymatic activity is regulated by a 24-amino-acid propeptide (Cys28–Ser51). During intracytosolic multiplication, bacteria accumulate the proform of PC-PLC at their membrane–cell-wall interface, whereas during cell-to-cell spread vacuolar acidification leads to maturation and rapid translocation of PC-PLC across the cell wall in a manner that is dependent on Mpl, the metalloprotease of Listeria. In the present study, we generated a series of propeptide mutants to determine the minimal requirement to prevent PC-PLC enzymatic activity and to identify residues regulating compartmentalization and maturation. We found that a single residue at position P1 (Ser51) of the cleavage site is sufficient to prevent enzymatic activity, which is consistent with P1′ (Trp52) being located within the active-site pocket. We observed that mutants with deletions at the N-terminus, but not the C-terminus, of the propeptide are translocated across the cell wall more effectively than wild-type PC-PLC at a physiological pH, and that individual amino acid residues within the N-terminus influence Mpl-mediated maturation of PC-PLC at acidic pH. However, deletion of more than 75% of the propeptide was required to completely prevent Mpl-mediated maturation of PC-PLC. These results indicate that the N-terminus of the propeptide regulates PC-PLC compartmentalization and that specific residues within the N-terminus influence the ability of Mpl to mediate PC-PLC maturation, although a six-residue propeptide is sufficient for Mpl to mediate PC-PLC maturation.


2016 ◽  
Vol 42 (2) ◽  
Author(s):  
Hasnain Hussain ◽  
Nikson Fatt Ming Chong

AbstractObjective:Restoration of catalytic activity of Isa2 fromMethods:The six conserved amino acid residues absent in the Stisa2 gene were restored by mutation using the overlap extension PCR and the asymmetrical overlap extension PCR methods. Next, mutant Stisa2 with restored catalytic residues was expressed inResults:Both qualitative and quantitative analysis showed that the restoration of the conserved residues in the catalytic site did not restore starch debranching activity. Molecular modeling showed greater than expected distances between the catalytic triad in mutant Stisa2. These additional distances are likely to prevent hydrogen bonding which stabilizes the reaction intermediate, and are critical for catalytic activity.Conclusions:These results suggest that during evolution, mutations in other highly conserved regions have caused significant changes to the structure and function of the catalytic network. Catalytically inactive Isa2, which is conserved in starch-producing plants, has evolved important non-catalytic roles such as in substrate binding and in regulating isoamylase activity.


2006 ◽  
Vol 102 (4) ◽  
pp. 362-364 ◽  
Author(s):  
Shigekazu Yano ◽  
Aki Kamemura ◽  
Kazuaki Yoshimune ◽  
Mitsuaki Moriguchi ◽  
Sachiko Yamamoto ◽  
...  

2017 ◽  
Vol 83 (9) ◽  
Author(s):  
M. Fata Moradali ◽  
Shirin Ghods ◽  
Bernd H. A. Rehm

ABSTRACT The exopolysaccharide alginate, produced by the opportunistic human pathogen Pseudomonas aeruginosa, confers a survival advantage to the bacterium by contributing to the formation of characteristic biofilms during infection. Membrane-anchored proteins Alg8 (catalytic subunit) and Alg44 (copolymerase) constitute the alginate polymerase that is being activated by the second messenger molecule bis-(3′, 5′)-cyclic dimeric GMP (c-di-GMP), but the mechanism of activation remains elusive. To shed light on the c-di-GMP-mediated activation of alginate polymerization in vivo, an in silico structural model of Alg8 fused to the c-di-GMP binding PilZ domain informed by the structure of cellulose synthase, BcsA, was developed. This structural model was probed by site-specific mutagenesis and different cellular levels of c-di-GMP. Results suggested that c-di-GMP-mediated activation of alginate polymerization involves amino acids residing at two loops, including H323 (loop A) and T457 and E460 (loop B), surrounding the catalytic site in the predicted model. The activities of the respective Alg8 variants suggested that c-di-GMP-mediated control of substrate access to the catalytic site of Alg8 is dissimilar to the known activation mechanism of BcsA. Alg8 variants responded differently to various c-di-GMP levels, while MucR imparted c-di-GMP for activation of alginate polymerase. Furthermore, we showed that Alg44 copolymerase constituted a stable dimer, with its periplasmic domains required for protein localization and alginate polymerization and modification. Superfolder green fluorescent protein (GFP) fusions of Alg8 and Alg44 showed a nonuniform, punctate, and patchy arrangement of both proteins surrounding the cell. Overall, this study provides insights into the c-di-GMP-mediated activation of alginate polymerization while assigning functional roles to Alg8 and Alg44, including their subcellular localization and distribution. IMPORTANCE The exopolysaccharide alginate is an important biofilm component of the opportunistic human pathogen P. aeruginosa and the principal cause of the mucoid phenotype that is the hallmark of chronic infections of cystic fibrosis patients. The production of alginate is mediated by interacting membrane proteins Alg8 and Alg44, while their activity is posttranslationally regulated by the second messenger c-di-GMP, a well-known regulator of the synthesis of a range of other exopolysaccharides in bacteria. This study provides new insights into the unknown activation mechanism of alginate polymerization by c-di-GMP. Experimental evidence that the activation of alginate polymerization requires the engagement of specific amino acid residues residing at the catalytic domain of Alg8 glycosyltransferase was obtained, and these residues are proposed to exert an allosteric effect on the PilZAlg44 domain upon c-di-GMP binding. This mechanism is dissimilar to the proposed mechanism of the autoinhibition of cellulose polymerization imposed by salt bridge formation between amino acid residues and released upon c-di-GMP binding, leading to activation of polymerization. On the other hand, conserved amino acid residues in the periplasmic domain of Alg44 were found to be involved in alginate polymerization as well as modification events, i.e., acetylation and epimerization. Due to the critical role of c-di-GMP in the regulation of many biological processes, particularly the motility-sessility switch and also the emergence of persisting mucoid phenotypes, these results aid to reach a better understanding of biofilm-associated regulatory networks and c-di-GMP signaling and might assist the development of inhibitory drugs.


Sign in / Sign up

Export Citation Format

Share Document