scholarly journals Role of the Salmonella Pathogenicity Island 1 (SPI-1) Protein InvB in Type III Secretion of SopE and SopE2, Two Salmonella Effector Proteins Encoded Outside of SPI-1

2003 ◽  
Vol 185 (23) ◽  
pp. 6950-6967 ◽  
Author(s):  
Kristin Ehrbar ◽  
Andrea Friebel ◽  
Samuel I. Miller ◽  
Wolf-Dietrich Hardt

ABSTRACT Salmonella enterica subspecies 1 serovar Typhimurium encodes a type III secretion system (TTSS) within Salmonella pathogenicity island 1 (SPI-1). This TTSS injects effector proteins into host cells to trigger invasion and inflammatory responses. Effector proteins are recognized by the TTSS via signals encoded in their N termini. Specific chaperones can be involved in this process. The chaperones InvB, SicA, and SicP are encoded in SPI-1 and are required for transport of SPI-1-encoded effectors. Several key effector proteins, like SopE and SopE2, are located outside of SPI-1 but are secreted in an SPI-1-dependent manner. It has not been clear how these effector proteins are recognized by the SPI-1 TTSS. Using pull-down and coimmunoprecipitation assays, we found that SopE is copurified with InvB, the known chaperone for the SPI-1-encoded effector protein Sip/SspA. We also found that InvB is required for secretion and translocation of SopE and SopE2 and for stabilization of SopE2 in the bacterial cytosol. Our data demonstrate that effector proteins encoded within and outside of SPI-1 use the same chaperone for secretion via the SPI-1 TTSS.

Microbiology ◽  
2011 ◽  
Vol 157 (1) ◽  
pp. 160-168 ◽  
Author(s):  
Patit P. Bhowmick ◽  
Devananda Devegowda ◽  
H. A. Darshanee Ruwandeepika ◽  
Iddya Karunasagar ◽  
Indrani Karunasagar

The type III secretion system encoded by the Salmonella pathogenicity island 2 (SPI-2) has a central role in the pathogenesis of systemic infections by Salmonella. Sixteen genes (ssaU, ssaB, ssaR, ssaQ, ssaO, ssaS, ssaP, ssaT, sscB, sseF, sseG, sseE, sseD, sseC, ssaD and sscA) of SPI-2 were targeted for PCR amplification in 57 seafood-associated serovars of Salmonella. The sseC gene of SPI-2 was found to be absent in two isolates of Salmonella enterica serovar Weltevreden, SW13 and SW39. Absence of sseC was confirmed by sequencing using flanking primers. SW13 had only 66 bp sequence of the sseC gene and SW39 had 58 bp sequence of this gene. A clinical isolate, S. Weltevreden – SW3, 10 : r : z6 – was used to construct a deletion mutant for the sseC gene. Significant reduction in the survival of SW3, 10 : r : z6 ΔsseC and natural mutants SW13 and SW39 in HeLa cells suggests that sseC has a crucial role in the intracellular survival of S. Weltevreden. Expression of sseC was upregulated during the intracellular phase of both S. enterica serovar Typhimurium and clinical isolate S. Weltevreden SW3, 10 : r : z6, suggesting a crucial role for this gene in the survival of S. Weltevreden inside host cells.


2004 ◽  
Vol 53 (11) ◽  
pp. 1145-1149 ◽  
Author(s):  
Rosanna Mundy ◽  
Claire Jenkins ◽  
Jun Yu ◽  
Henry Smith ◽  
Gad Frankel

Enterohaemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli are important diarrhoeagenic pathogens; infection is dependent on translocation of a number of type III effector proteins. Until recently all the known effectors were encoded on the LEE pathogenicity island, which also encodes the adhesin intimin and the type III secretion apparatus. Recently, a novel non-LEE effector protein, EspI/NleA, which is required for full virulence in vivo and is encoded on a prophage, was identified. The aim of this study was to determine the distribution of espI among clinical EHEC and EPEC isolates. espI was detected in 86 % and 53 % of LEE+ EHEC and EPEC strains, respectively. Moreover, the espI gene was more commonly found in patients suffering from a more severe disease.


Microbiology ◽  
2010 ◽  
Vol 156 (6) ◽  
pp. 1805-1814 ◽  
Author(s):  
R. Boonyom ◽  
M. H. Karavolos ◽  
D. M. Bulmer ◽  
C. M. A. Khan

Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important pathogen and a causative agent of gastroenteritis. During infection, S. Typhimurium assembles molecular-needle complexes termed type III secretion (T3S) systems to translocate effector proteins from the bacterial cytoplasm directly into the host cell. The T3S signals that direct the secretion of effectors still remain enigmatic. SopD is a key T3S effector contributing to the systemic virulence of S. Typhimurium and the development of gastroenteritis. We have scrutinized the distribution of the SopD T3S signals using in silico analysis and a targeted deletion approach. We show that amino acid residues 6–10 act as the N-terminal secretion signal for Salmonella pathogenicity island 1 (SPI-1) T3S. Furthermore, we show that two putative C-terminal helical regions of SopD are essential for its secretion and also help prevent erroneous secretion through the flagellar T3S machinery. In addition, using protein–protein interaction assays, we have identified an association between SopD and the SPI-1 T3S system ATPase, InvC. These findings demonstrate that T3S of SopD involves multiple signals and protein interactions, providing important mechanistic insights into effector protein secretion.


2006 ◽  
Vol 75 (2) ◽  
pp. 574-580 ◽  
Author(s):  
Brian K. Coombes ◽  
Michael J. Lowden ◽  
Jennifer L. Bishop ◽  
Mark E. Wickham ◽  
Nat F. Brown ◽  
...  

ABSTRACT Bacterial pathogens use horizontal gene transfer to acquire virulence factors that influence host colonization, alter virulence traits, and ultimately shape the outcome of disease following infection. One hallmark of the host-pathogen interaction is the prokaryotic type III secretion system that translocates virulence factors into host cells during infection. Salmonella enterica possesses two type III secretion systems that are utilized during host colonization and intracellular replication. Salmonella pathogenicity island 2 (SPI2) is a genomic island containing approximately 30 contiguous genes required to assemble a functional secretion system including the two-component regulatory system called SsrA-SsrB that positively regulates transcription of the secretion apparatus. We used transcriptional profiling with DNA microarrays to search for genes that coregulate with the SPI2 type III secretion machinery in an SsrB-dependent manner. Here we report the identification of a Salmonella-specific translocated effector called SseL that is required for full virulence during murine typhoid-like disease. Analysis of infected macrophages using fluorescence-activated cell sorting revealed that sseL is induced inside cells and requires SsrB for expression. SseL is retained predominantly in the cytoplasm of infected cells following translocation by the type III system encoded in SPI2. Animal infection experiments with sseL mutant bacteria indicate that integration of SseL into the SsrB response regulatory system contributes to systemic virulence of this pathogen.


2013 ◽  
Vol 57 (5) ◽  
pp. 2191-2198 ◽  
Author(s):  
Jianfang Li ◽  
Chao Lv ◽  
Weiyang Sun ◽  
Zhenyu Li ◽  
Xiaowei Han ◽  
...  

ABSTRACTBacterial virulence factors have been increasingly regarded as attractive targets for development of novel antibacterial agents. Virulence inhibitors are less likely to generate bacterial resistance, which makes them superior to traditional antibiotics that target bacterial viability.Salmonella entericaserovar Typhimurium, an important food-borne human pathogen, has type III secretion system (T3SS) as its major virulence factor. T3SS secretes effector proteins to facilitate invasion into host cells. In this study, we identified several analogs of cytosporone B (Csn-B) that strongly block the secretion ofSalmonellapathogenicity island 1 (SPI-1)-associated effector proteins, without affecting the secretion of flagellar protein FliCin vitro. Csn-B and two other derivatives exhibited a strong inhibitory effect on SPI-1-mediated invasion to HeLa cells, while no significant toxicity to bacteria was observed. Nucleoid proteins Hha and H-NS bind to the promoters of SPI-1 regulator geneshilD,hilC, andrtsAto repress their expression and consequently regulate the expression of SPI-1 apparatus and effector genes. We found that Csn-B upregulated the transcription ofhhaandhns, implying that Csn-B probably affected the secretion of effectors through the Hha–H-NS regulatory pathway. In summary, this study presented an effective SPI-1 inhibitor, Csn-B, which may have potential in drug development against antibiotic-resistantSalmonella.


2007 ◽  
Vol 190 (2) ◽  
pp. 476-486 ◽  
Author(s):  
Jeremy R. Ellermeier ◽  
James M. Slauch

ABSTRACT The invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium is mediated by a type III secretion system (T3SS) encoded on Salmonella pathogenicity island 1 (SPI1). Expression of the SPI1 T3SS is tightly regulated by the combined action of HilC, HilD, and RtsA, three AraC family members that can independently activate hilA, which encodes the direct regulator of the SPI1 structural genes. Expression of hilC, hilD, and rtsA is controlled by a number of regulators that respond to a variety of environmental signals. In this work, we show that one such signal is iron mediated by Fur (ferric uptake regulator). Fur activates hilA transcription in a HilD-dependent manner. Fur regulation of HilD does not appear to be simply at the transcriptional or translational level but rather requires the presence of the HilD protein. Fur activation of SPI1 is not mediated through the Fur-regulated small RNAs RfrA and RfrB, which are the Salmonella ortholog and paralog of RyhB that control expression of sodB. Fur regulation of HilD is also not mediated through the known SPI1 repressor HilE or the CsrABC system. Although understanding the direct mechanism of Fur action on HilD requires further analysis, this work is an important step toward elucidating how various global regulatory systems control SPI1.


2002 ◽  
Vol 184 (17) ◽  
pp. 4699-4708 ◽  
Author(s):  
Tomoko Kubori ◽  
Jorge E. Galán

ABSTRACT Salmonella enterica encodes a type III secretion system (TTSS) within a pathogenicity island located at centisome 63 (SPI-1), which is essential for its pathogenicity. This system mediates the transfer of a battery of bacterial proteins into the host cell with the capacity to modulate cellular functions. The transfer process is dependent on the function of protein translocases SipB, SipC, and SipD. We report here that Salmonella protein InvE, which is also encoded within SPI-1, is essential for the translocation of bacterial proteins into host cells. An S. enterica serovar Typhimurium mutant carrying a loss-of-function mutation in invE shows reduced secretion of SipB, SipC, and SipD while exhibiting increased secretion of other TTSS effector proteins. We also demonstrate that InvE interacts with a protein complex formed by SipB, SipC, and their cognate chaperone, SicA. We propose that InvE controls protein translocation by regulating the function of the Sip protein translocases.


2006 ◽  
Vol 188 (7) ◽  
pp. 2411-2420 ◽  
Author(s):  
Wendy Higashide ◽  
Daoguo Zhou

ABSTRACT Salmonella enterica serovar Typhimurium encodes two type III secretion systems (TTSSs) within pathogenicity island 1 (SPI-1) and island 2 (SPI-2). These type III protein secretion and translocation systems transport a panel of bacterial effector proteins across both the bacterial and the host cell membranes to promote bacterial entry and subsequent survival inside host cells. Effector proteins contain secretion and translocation signals that are often located at their N termini. We have developed a ruffling-based translocation reporter system that uses the secretion- and translocation-deficient catalytic domain of SopE, SopE78-240, as a reporter. Using this assay, we determined that the N-terminal 45 amino acid residues of Salmonella SopA are necessary and sufficient for directing its secretion and translocation through the SPI-1 TTSS. SopA1-45, but not SopA1-44, is also able to bind to its chaperone, InvB, indicating that SPI-1 type III secretion and translocation of SopA require its chaperone.


2015 ◽  
Vol 81 (17) ◽  
pp. 6078-6087 ◽  
Author(s):  
Zhi Peng Gao ◽  
Pin Nie ◽  
Jin Fang Lu ◽  
Lu Yi Liu ◽  
Tiao Yi Xiao ◽  
...  

ABSTRACTThe type III secretion system (T3SS) ofEdwardsiella tardaplays an important role in infection by translocating effector proteins into host cells. EseB, a component required for effector translocation, is reported to mediate autoaggregation ofE. tarda. In this study, we demonstrate that EseB forms filamentous appendages on the surface ofE. tardaand is required for biofilm formation byE. tardain Dulbecco's modified Eagle's medium (DMEM). Biofilm formation byE. tardain DMEM does not require FlhB, an essential component for assembling flagella. Dynamic analysis of EseB filament formation, autoaggregation, and biofilm formation shows that the formation of EseB filaments occurs prior to autoaggregation and biofilm formation. The addition of an EseB antibody toE. tardacultures before bacterial autoaggregation prevents autoaggregation and biofilm formation in a dose-dependent manner, whereas the addition of the EseB antibody toE. tardacultures in which biofilm is already formed does not destroy the biofilm. Therefore, EseB filament-mediated bacterial cell-cell interaction is a prerequisite for autoaggregation and biofilm formation.


2021 ◽  
Vol 118 (12) ◽  
pp. e2019566118
Author(s):  
Marc-André LeBlanc ◽  
Morgan R. Fink ◽  
Thomas T. Perkins ◽  
Marcelo C. Sousa

Multiple gram-negative bacteria encode type III secretion systems (T3SS) that allow them to inject effector proteins directly into host cells to facilitate colonization. To be secreted, effector proteins must be at least partially unfolded to pass through the narrow needle-like channel (diameter <2 nm) of the T3SS. Fusion of effector proteins to tightly packed proteins—such as GFP, ubiquitin, or dihydrofolate reductase (DHFR)—impairs secretion and results in obstruction of the T3SS. Prior observation that unfolding can become rate-limiting for secretion has led to the model that T3SS effector proteins have low thermodynamic stability, facilitating their secretion. Here, we first show that the unfolding free energy (ΔGunfold0) of two Salmonella effector proteins, SptP and SopE2, are 6.9 and 6.0 kcal/mol, respectively, typical for globular proteins and similar to published ΔGunfold0 for GFP, ubiquitin, and DHFR. Next, we mechanically unfolded individual SptP and SopE2 molecules by atomic force microscopy (AFM)-based force spectroscopy. SptP and SopE2 unfolded at low force (Funfold ≤ 17 pN at 100 nm/s), making them among the most mechanically labile proteins studied to date by AFM. Moreover, their mechanical compliance is large, as measured by the distance to the transition state (Δx‡ = 1.6 and 1.5 nm for SptP and SopE2, respectively). In contrast, prior measurements of GFP, ubiquitin, and DHFR show them to be mechanically robust (Funfold > 80 pN) and brittle (Δx‡ < 0.4 nm). These results suggest that effector protein unfolding by T3SS is a mechanical process and that mechanical lability facilitates efficient effector protein secretion.


Sign in / Sign up

Export Citation Format

Share Document