scholarly journals Molecular and Cellular Function of Transcription Factor 4 in Pitt-Hopkins Syndrome

2021 ◽  
pp. 1-9
Author(s):  
Huei-Ying Chen ◽  
Joseph F. Bohlen ◽  
Brady J. Maher

Transcription factor 4 (TCF4, also known as ITF2 or E2-2) is a type I basic helix-loop-helix transcription factor. Autosomal dominant mutations in TCF4 cause Pitt-Hopkins syndrome (PTHS), a rare syndromic form of autism spectrum disorder. In this review, we provide an update on the progress regarding our understanding of TCF4 function at the molecular, cellular, physiological, and behavioral levels with a focus on phenotypes and therapeutic interventions. We examine upstream and downstream regulatory networks associated with TCF4 and discuss a range of in vitro and in vivo data with the aim of understanding emerging TCF4-specific mechanisms relevant for disease pathophysiology. In conclusion, we provide comments about exciting future avenues of research that may provide insights into potential new therapeutic targets for PTHS.

2017 ◽  
Author(s):  
Luca Tosti ◽  
James Ashmore ◽  
Boon Siang Nicholas Tan ◽  
Benedetta Carbone ◽  
Tapan K Mistri ◽  
...  

AbstractThe identification of transcription factor (TF) binding sites in the genome is critical to understanding gene regulatory networks (GRNs). While ChIP-seq is commonly used to identify TF targets, it requires specific ChIP-grade antibodies and high cell numbers, often limiting its applicability. DNA adenine methyltransferase identification (DamID), developed and widely used in Drosophila, is a distinct technology to investigate protein-DNA interactions. Unlike ChIP-seq, it does not require antibodies, precipitation steps or chemical protein-DNA crosslinking, but to date it has been seldom used in mammalian cells due to technical impediments. Here we describe an optimised DamID method coupled with next generation sequencing (DamID-seq) in mouse cells, and demonstrate the identification of the binding sites of two TFs, OCT4 and SOX2, in as few as 1,000 embryonic stem cells (ESCs) and neural stem cells (NSCs), respectively. Furthermore, we have applied this technique in vivo for the first time in mammals. Oct4 DamID-seq in the gastrulating mouse embryo at 7.5 days post coitum (dpc) successfully identified multiple Oct4 binding sites proximal to genes involved in embryo development, neural tube formation, mesoderm-cardiac tissue development, consistent with the pivotal role of this TF in post-implantation embryo. This technology paves the way to unprecedented investigations of TF-DNA interactions and GRNs in specific cell types with limited availability in mammals including in vivo samples.


2004 ◽  
Vol 186 (4) ◽  
pp. 1120-1128 ◽  
Author(s):  
K. A. Susanna ◽  
A. F. van der Werff ◽  
C. D. den Hengst ◽  
B. Calles ◽  
M. Salas ◽  
...  

ABSTRACT The development of genetic competence in Bacillus subtilis is regulated by a complex signal transduction cascade, which results in the synthesis of the competence transcription factor, encoded by comK. ComK is required for the transcription of the late competence genes that encode the DNA binding and uptake machinery and of genes required for homologous recombination. In vivo and in vitro experiments have shown that ComK is responsible for transcription activation at the comG promoter. In this study, we investigated the mechanism of this transcription activation. The intrinsic binding characteristics of RNA polymerase with and without ComK at the comG promoter were determined, demonstrating that ComK stabilizes the binding of RNA polymerase to the comG promoter. This stabilization probably occurs through interactions with the upstream DNA, since a deletion of the upstream DNA resulted in an almost complete abolishment of stabilization of RNA polymerase binding. Furthermore, a strong requirement for the presence of an extra AT box in addition to the common ComK-binding site was shown. In vitro transcription with B. subtilis RNA polymerase reconstituted with wild-type α-subunits and with C-terminal deletion mutants of the α-subunits was performed, demonstrating that these deletions do not abolish transcription activation by ComK. This indicates that ComK is not a type I activator. We also show that ComK is not required for open complex formation. A possible mechanism for transcription activation is proposed, implying that the major stimulatory effect of ComK is on binding of RNA polymerase.


2016 ◽  
Vol 36 (8) ◽  
pp. 1297-1309 ◽  
Author(s):  
Tomohiro Kayama ◽  
Masaki Mori ◽  
Yoshiaki Ito ◽  
Takahide Matsushima ◽  
Ryo Nakamichi ◽  
...  

Mechanoforces experienced by an organ are translated into biological information for cellular sensing and response. In mammals, the tendon connective tissue experiences and resists physical forces, with tendon-specific mesenchymal cells called tenocytes orchestrating extracellular matrix (ECM) turnover. We show that Mohawk (Mkx), a tendon-specific transcription factor, is essential in mechanoresponsive tenogenesis through regulation of its downstream ECM genes such as type I collagens and proteoglycans such as fibromodulin bothin vivoandin vitro. Wild-type (WT) mice demonstrated an increase in collagen fiber diameter and density in response to physical treadmill exercise, whereas inMkx−/−mice, tendons failed to respond to the same mechanical stimulation. Furthermore, functional screening of theMkxpromoter region identified several upstream transcription factors that regulateMkx. In particular, general transcription factor II-I repeat domain-containing protein 1 (Gtf2ird1) that is expressed in the cytoplasm of unstressed tenocytes translocated into the nucleus upon mechanical stretching to activate theMkxpromoter through chromatin regulation. Here, we demonstrate thatGtf2ird1is essential forMkxtranscription, while also linking mechanical forces toMkx-mediated tendon homeostasis and regeneration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José R. Teixeira ◽  
Ryan A. Szeto ◽  
Vinicius M. A. Carvalho ◽  
Alysson R. Muotri ◽  
Fabio Papes

AbstractThe human transcription factor 4 gene (TCF4) encodes a helix–loop–helix transcription factor widely expressed throughout the body and during neural development. Mutations in TCF4 cause a devastating autism spectrum disorder known as Pitt–Hopkins syndrome, characterized by a range of aberrant phenotypes including severe intellectual disability, absence of speech, delayed cognitive and motor development, and dysmorphic features. Moreover, polymorphisms in TCF4 have been associated with schizophrenia and other psychiatric and neurological conditions. Details about how TCF4 genetic variants are linked to these diseases and the role of TCF4 during neural development are only now beginning to emerge. Here, we provide a comprehensive review of the functions of TCF4 and its protein products at both the cellular and organismic levels, as well as a description of pathophysiological mechanisms associated with this gene.


2001 ◽  
Vol 21 (2) ◽  
pp. 524-533 ◽  
Author(s):  
E. Claire Roberts ◽  
Richard W. Deed ◽  
Toshiaki Inoue ◽  
John D. Norton ◽  
Andrew D. Sharrocks

ABSTRACT The Id subfamily of helix-loop-helix (HLH) proteins plays a fundamental role in the regulation of cellular proliferation and differentiation. The major mechanism by which Id proteins are thought to inhibit differentiation is through interaction with other HLH proteins and inhibition of their DNA-binding activity. However, Id proteins have also been shown to interact with other proteins involved in regulating cellular proliferation and differentiation, suggesting a more widespread regulatory function. In this study we demonstrate functional interactions between Id proteins and members of the Pax-2/-5/-8 subfamily of paired-domain transcription factors. Members of the Pax transcription factor family have key functions in regulating several developmental processes exemplified by B lymphopoiesis, in which Pax-5 plays an essential role. Id proteins bind to Pax proteins in vitro and in vivo. Binding occurs through the paired DNA-binding domain of the Pax proteins and results in the disruption of DNA-bound complexes containing Pax-2, Pax-5, and Pax-8. In vivo, Id proteins modulate the transcriptional activity mediated by Pax-5 complexes on the B-cell-specific mb-1 promoter. Our results therefore demonstrate a novel facet of Id function in regulating cellular differentiation by functionally antagonizing the action of members of the Pax transcription factor family.


2018 ◽  
Vol 3 ◽  
pp. 125 ◽  
Author(s):  
Laura J.A. Hardwick ◽  
Anna Philpott

The proneural basic-helix-loop-helix (bHLH) transcription factor Ascl1 is a master regulator of neurogenesis in both central and peripheral nervous systems in vivo, and is a central driver of neuronal reprogramming in vitro. Over the last three decades, assaying primary neuron formation in Xenopus embryos in response to transcription factor overexpression has contributed to our understanding of the roles and regulation of proneural proteins like Ascl1, with homologues from different species usually exhibiting similar functional effects. Here we demonstrate that the mouse Ascl1 protein is twice as active as the Xenopus protein in inducing neural-β-tubulin expression in Xenopus embryos, despite there being little difference in protein accumulation or ability to undergo phosphorylation, two properties known to influence Ascl1 function. This superior activity of the mouse compared to the Xenopus protein is dependent on the presence of the non-conserved N terminal region of the protein, and indicates species-specific regulation that may necessitate care when interpreting results in cross-species experiments.


2019 ◽  
Author(s):  
Leon Louis Seifert ◽  
Clara Si ◽  
Sarah Ballentine ◽  
Debjani Saha ◽  
Maren de Vries ◽  
...  

ABSTRACTThe transcription of interferon-stimulated genes (ISGs) is classically triggered via activation of the JAK-STAT pathway, and together, ISGs raise a multifaceted antiviral barrier. An increasing body of evidence reports the existence of additional, non-canonical pathways and transcription factors that coordinate ISG expression. Detailed knowledge of how heterogenous mechanisms regulate ISG expression is crucial for the rational design of drugs targeting the type I interferon response. Here, we characterize the first ETS transcription factor family member as a regulator of non-canonical ISG expression: E74-like ETS transcription factor 1 (ELF1). Using high-content microscopy to quantify viral infection over time, we found that ELF1, itself an ISG, inhibits eight diverse RNA and DNA viruses uniquely at multi-cycle replication. ELF1 did not regulate expression of type I or II interferons, and ELF1’s antiviral effect was not abolished by the absence of STAT1 or by inhibition of JAK phosphorylation. Accordingly, comparative expression analyses by RNAseq revealed that the ELF1 transcriptional program is distinct from, and delayed with respect to, the immediate interferon response. Finally, knockdown experiments demonstrated that ELF1 is a critical component of the antiviral interferon response in vitro and in vivo. Our findings reveal a previously overlooked mechanism of non-canonical ISG regulation that both amplifies and prolongs the initial interferon response by expressing broadly antiviral restriction factors.AUTHOR SUMMARYOver 60 years after their discovery, we still struggle to understand exactly how interferons inhibit viruses. Our gap in knowledge stems, on one hand, from the sheer number of interferon-stimulated effector genes, of which only few have been characterized in mechanistic detail. On the other hand, our knowledge of interferon-regulated gene transcription is constantly evolving. We know that different regulatory mechanisms greatly influence the quality, magnitude, and timing of interferon-stimulated gene expression, all of which may contribute to the antiviral mechanism of interferons. Deciphering these regulatory mechanisms is indispensable for understanding this critical first line of host defense, and for harnessing the power of interferons in novel antiviral therapies. Here, we report a novel mechanism of interferon-induced gene regulation by an interferon-stimulated gene, which, paradoxically, inhibits viruses in the absence of additional interferon signaling: E74-like ETS transcription factor 1 (ELF1) raises an unusually delayed antiviral program that potently restricts propagation of all viruses tested in our study. Reduced levels of ELF1 significantly diminished interferon-mediated host defenses against influenza A virus in vitro and in vivo, suggesting a critical but previously overlooked role in the type I interferon response. The transcriptional program raised by ELF1 is vast and comprises over 400 potentially antiviral genes, which are almost entirely distinct from those known to be induced by interferon. Taken together, our data provide evidence for a critical secondary wave of antiviral protection that adds both “quality” and “time” to the type I interferon response.


2010 ◽  
Vol 30 (11) ◽  
pp. 2737-2749 ◽  
Author(s):  
Emmanuelle Huillard ◽  
Léa Ziercher ◽  
Olivier Blond ◽  
Michael Wong ◽  
Jean-Christophe Deloulme ◽  
...  

ABSTRACT Genetic programs that govern neural stem/progenitor cell (NSC) proliferation and differentiation are dependent on extracellular cues and a network of transcription factors, which can be regulated posttranslationally by phosphorylation. However, little is known about the kinase-dependent pathways regulating NSC maintenance and oligodendrocyte development. We used a conditional knockout approach to target the murine regulatory subunit (beta) of protein kinase casein kinase 2 (CK2β) in embryonic neural progenitors. Loss of CK2β leads to defects in proliferation and differentiation of embryonic NSCs. We establish CK2β as a key positive regulator for the development of oligodendrocyte precursor cells (OPCs), both in vivo and in vitro. We show that CK2β directly interacts with the basic helix-loop-helix (bHLH) transcription factor Olig2, a critical modulator of OPC development, and activates the CK2-dependent phosphorylation of its serine-threonine-rich (STR) domain. Finally, we reveal that the CK2-targeted STR domain is required for the oligodendroglial function of Olig2. These findings suggest that CK2 may control oligodendrogenesis, in part, by regulating the activity of the lineage-specific transcription factor Olig2. Thus, CK2β appears to play an essential and uncompensated role in central nervous system development.


Sign in / Sign up

Export Citation Format

Share Document