scholarly journals Regulation of Escherichia coli Hemolysin E Expression by H-NS and Salmonella SlyA

2004 ◽  
Vol 186 (6) ◽  
pp. 1620-1628 ◽  
Author(s):  
Neil R. Wyborn ◽  
Melanie R. Stapleton ◽  
Valia A. Norte ◽  
Ruth E. Roberts ◽  
Jamie Grafton ◽  
...  

ABSTRACT The Escherichia coli hlyE gene (also known as clyA or sheA) codes for a novel pore-forming toxin. Previous work has shown that the global transcription factors FNR and CRP positively regulate hlyE expression by binding at the same site. Here in vivo transcription studies reveal that FNR occupies the hlyE promoter more frequently than CRP, providing a mechanism for the moderate upregulation of hlyE expression in response to two distinct environmental signals (oxygen and glucose starvation). It has been reported that H-NS interacts with two large regions of the hlyE promoter (PhlyE), one upstream of the −35 element and one downstream of the −10 element. Here we identify two high-affinity H-NS sites, H-NS I, located at the 3′ end of the extended upstream footprint, and H-NS II, located at the 5′ end of the extended downstream footprint. It is suggested that these high-affinity sites initiate the progressive formation of higher order complexes, allowing a range of H-NS-mediated regulatory effects at PhlyE. Finally, the identification of a SlyA binding site that overlaps the H-NS I site in PhlyE suggests a mechanism to explain how SlyA overproduction enhances hlyE expression by antagonizing the negative effects of H-NS.

1993 ◽  
Vol 182 (1) ◽  
Author(s):  
Dierk Vagts ◽  
Hans-Peter Dienes ◽  
PeterJ. Barth ◽  
Hansj�rg Ronneberger ◽  
Klaus-Dieter Hungerer ◽  
...  

1999 ◽  
Vol 181 (9) ◽  
pp. 2789-2796 ◽  
Author(s):  
Jian Song ◽  
Tianhui Xia ◽  
Roy A. Jensen

ABSTRACT Pterin 4a-carbinolamine dehydratase is bifunctional in mammals. In addition to playing a catalytic role in pterin recycling in the cytoplasm, it plays a regulatory role in the nucleus, where it acts as a dimerization-cofactor component (called DCoH) for the transcriptional activator HNF-1α. A thus far unique operon in Pseudomonas aeruginosa contains a gene encoding a homolog (PhhB) of the regulatory dehydratase, together with genes encoding phenylalanine hydroxylase (PhhA) and aromatic aminotransferase (PhhC). Using complementation of tyrosine auxotrophy in Escherichia colias a functional test, we have found that the in vivo function of PhhA requires PhhB. Strikingly, mammalian DCoH was an effective substitute for PhhB, and either one was effective in trans. Surprisingly, the required presence of PhhB for complementation did not reflect a critical positive regulatory effect of phhB onphhA expression. Rather, in the absence of PhhB, PhhA was found to be extremely toxic in E. coli, probably due to the nonenzymatic formation of 7-biopterin or a similar derivative. However, bacterial PhhB does appear to exert modest regulatory effects in addition to having a catalytic function. PhhB enhances the level of PhhA two- to threefold, as was demonstrated by gene inactivation ofphhB in P. aeruginosa and by comparison of the levels of expression of PhhA in the presence and absence of PhhB inEscherichia coli. Experiments using constructs having transcriptional and translational fusions with a lacZreporter indicated that PhhB activates PhhA at the posttranscriptional level. Regulation of PhhA and PhhB is semicoordinate; both PhhA and PhhB are induced coordinately in the presence of eitherl-tyrosine or l-phenylalanine, but PhhB exhibits a significant basal level of activity that is lacking for PhhA. Immunoprecipitation and affinity chromatography showed that PhhA and PhhB form a protein-protein complex.


2007 ◽  
Vol 189 (18) ◽  
pp. 6655-6664 ◽  
Author(s):  
Sang Kyun Ahn ◽  
Kapil Tahlan ◽  
Zhou Yu ◽  
Justin Nodwell

ABSTRACT The SCO7222 protein and ActR are two of ∼150 TetR-like transcription factors encoded in the Streptomyces coelicolor genome. Using bioluminescence as a readout, we have developed Escherichia coli-based biosensors that accurately report the regulatory activity of these proteins and used it to investigate their interactions with DNA and small-molecule ligands. We found that the SCO7222 protein and ActR repress the expression of their putative target genes, SCO7223 and actII-ORF2 (actA), respectively, by interacting with operator sequence in the promoters. The operators recognized by the two proteins are related such that O 7223 (an operator for SCO7223) could be bound by both the SCO7222 protein and ActR with similar affinities. In contrast, Oact (an operator for actII-ORF2) was bound tightly by ActR and more weakly by the SCO7222 protein. We demonstrated ligand specificity of these proteins by showing that while TetR (but not ActR or the SCO7222 protein) interacts with tetracyclines, ActR (but not TetR or the SCO7222 protein) interacts with actinorhodin and related molecules. Through operator-targeted mutagenesis, we found that at least two nucleotide changes in O 7223 were required to disrupt its interaction with SCO7222 protein, while ActR was more sensitive to changes on Oact . Most importantly, we found that the interaction of each protein with wild-type and mutant operator sequences in vivo and in vitro correlated perfectly. Our data suggest that E. coli-based biosensors of this type should be broadly applicable to TetR-like transcription factors.


1985 ◽  
Vol 63 (2) ◽  
pp. 128-136
Author(s):  
Deborah A. Brown ◽  
Robert A. Cook

The effects of K+ and various anions on the catalytic and regulatory properties of the NADP-specific malic enzyme of Escherichia coli are reported. Studies on the susceptibility of the enzyme to proteolysis indicate that K+ binds directly to the enzyme with a resultant change in enzyme conformation. Kinetic studies indicate that the binding of optimal concentrations of K+ results in activation of the enzyme, increasing both the Vmax and the affinity of the enzyme for divalent cations. The inhibition of enzyme activity observed at KCl concentrations greater than 50 mM is shown to be nonspecific, resulting from increasing ionic strength. The mixed cooperativity between malate-binding sites previously reported at optimal K+ concentration is more pronounced at nonoptimal K+ concentrations (0 and 150 mM). The regulatory effect of metal cofactors and the mixed cooperativity between malate-binding sites is abolished when kinetic studies are conducted at low ionic strength or in the presence of acetate. Acetate appears to act as an activator, increasing the affinity of the enzyme for malate and protecting the enzyme against the inhibition caused by high ionic strength. It is postulated that the enzyme is operating in vivo in a partially inhibited state owing to the ionic strength of the cytoplasm. The kinetic studies conducted at higher ionic strength in vitro are therefore more applicable to the in vivo situation.


2000 ◽  
Vol 182 (4) ◽  
pp. 961-966 ◽  
Author(s):  
Mireille Ansaldi ◽  
Gwénola Simon ◽  
Michèle Lepelletier ◽  
Vincent Méjean

ABSTRACT In the presence of trimethylamine N-oxide (TMAO), the TorS-TorR two-component regulatory system induces thetorCAD operon, which encodes the TMAO respiratory system ofEscherichia coli. The sensor protein TorS detects TMAO and transphosphorylates the response regulator TorR which, in turn, activates transcription of torCAD. The torRgene and the torCAD operon are divergently transcribed, and the short torR-torC intergenic region contains four direct repeats (the tor boxes) which proved to be TorR binding sites. The tor box 1-box 2 region covers thetorR transcription start site and constitutes a TorR high-affinity binding site, whereas box 3 and box 4 correspond to low-affinity binding sites. By using torR-lacZ operon fusions in different genetic backgrounds, we showed that thetorR gene is negatively autoregulated. Surprisingly, TorR autoregulation is TMAO independent and still occurs in atorS mutant. In addition, this negative regulation involves only the TorR high-affinity binding site. Together, these data suggest that phosphorylated as well as unphosphorylated TorR binds the box 1-box 2 region in vivo, thus preventing RNA polymerase from binding to the torR promoter whatever the growth conditions. By changing the spacing between box 2 and box 3, we demonstrated that the DNA motifs of the high- and low-affinity binding sites must be close to each other and located on the same side of the DNA helix to allow induction of the torCAD operon. Thus, prior TorR binding to the box 1-box 2 region seems to allow cooperative binding of phosphorylated TorR to box 3 and box 4.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tomohiro Shimada ◽  
Hiroshi Ogasawara ◽  
Ikki Kobayashi ◽  
Naoki Kobayashi ◽  
Akira Ishihama

The identification of regulatory targets of all transcription factors (TFs) is critical for understanding the entire network of genome regulation. A total of approximately 300 TFs exist in the model prokaryote Escherichia coli K-12, but the identification of whole sets of their direct targets is impossible with use of in vivo approaches. For this end, the most direct and quick approach is to identify the TF-binding sites in vitro on the genome. We then developed and utilized the gSELEX screening system in vitro for identification of more than 150 E. coli TF-binding sites along the E. coli genome. Based on the number of predicted regulatory targets, we classified E. coli K-12 TFs into four groups, altogether forming a hierarchy ranging from a single-target TF (ST-TF) to local TFs, global TFs, and nucleoid-associated TFs controlling as many as 1,000 targets. Using the collection of purified TFs and a library of genome DNA segments from a single and the same E. coli K-12, we identified here a total of 11 novel ST-TFs, CsqR, CusR, HprR, NorR, PepA, PutA, QseA, RspR, UvrY, ZraR, and YqhC. The regulation of single-target promoters was analyzed in details for the hitherto uncharacterized QseA and RspR. In most cases, the ST-TF gene and its regulatory target genes are adjacently located on the E. coli K-12 genome, implying their simultaneous transfer in the course of genome evolution. The newly identified 11 ST-TFs and the total of 13 hitherto identified altogether constitute the minority group of TFs in E. coli K-12.


2019 ◽  
Author(s):  
Rahul Saxena ◽  
Christopher B Stanley ◽  
Pankaj Kumar ◽  
Matthew J Cuneo ◽  
Digvijay Patil ◽  
...  

Abstract Escherichia coli replication initiator protein DnaA binds ATP with high affinity but the amount of ATP required to initiate replication greatly exceeds the amount required for binding. Previously, we showed that ATP-DnaA, not ADP-DnaA, undergoes a conformational change at the higher nucleotide concentration, which allows DnaA oligomerization at the replication origin but the association state remains unclear. Here, we used Small Angle X-ray Scattering (SAXS) to investigate oligomerization of DnaA in solution. Whereas ADP-DnaA was predominantly monomeric, AMP–PNP–DnaA (a non-hydrolysable ATP-analog bound-DnaA) was oligomeric, primarily dimeric. Functional studies using DnaA mutants revealed that DnaA(H136Q) is defective in initiating replication in vivo. The mutant retains high-affinity ATP binding, but was defective in producing replication-competent initiation complexes. Docking of ATP on a structure of E. coli DnaA, modeled upon the crystallographic structure of Aquifex aeolicus DnaA, predicts a hydrogen bond between ATP and imidazole ring of His136, which is disrupted when Gln is present at position 136. SAXS performed on AMP–PNP–DnaA (H136Q) indicates that the protein has lost its ability to form oligomers. These results show the importance of high ATP in DnaA oligomerization and its dependence on the His136 residue.


Microbiology ◽  
2006 ◽  
Vol 152 (12) ◽  
pp. 3643-3650 ◽  
Author(s):  
Paul Casaz ◽  
Lynne K. Garrity-Ryan ◽  
David McKenney ◽  
Caroline Jackson ◽  
Stuart B. Levy ◽  
...  

MarA, SoxS and Rob are transcription factors belonging to the AraC family. While these proteins have been associated historically with control of multiple antibiotic resistance, and tolerance to oxidative stress agents and organic solvents, only a paucity of experimental data support a role in regulating virulence. Clinical Escherichia coli isolates, and isogenic strains lacking marA, soxS and rob, were studied in a murine model of ascending pyelonephritis, which is a clinically relevant model of urinary tract infection. Organisms lacking all three transcription factors (triple knockouts) were significantly less virulent than parental strains, and complementation studies demonstrated that the addition of marA, soxS and rob individually restored wild-type virulence in the triple-knockout strain. Deletion of soxS or rob alone was more detrimental than the removal of marA. Thus, all three proteins contribute to virulence in vivo.


2020 ◽  
Vol 117 (39) ◽  
pp. 24557-24566 ◽  
Author(s):  
Alejandra Freire-Rios ◽  
Keita Tanaka ◽  
Isidro Crespo ◽  
Elmar van der Wijk ◽  
Yana Sizentsova ◽  
...  

The hormone auxin controls many aspects of the plant life cycle by regulating the expression of thousands of genes. The transcriptional output of the nuclear auxin signaling pathway is determined by the activity of AUXIN RESPONSE transcription FACTORs (ARFs), through their binding to cis-regulatory elements in auxin-responsive genes. Crystal structures, in vitro, and heterologous studies have fueled a model in which ARF dimers bind with high affinity to distinctly spaced repeats of canonical AuxRE motifs. However, the relevance of this "caliper" model, and the mechanisms underlying the binding affinities in vivo, have remained elusive. Here we biochemically and functionally interrogate modes of ARF–DNA interaction. We show that a single additional hydrogen bond in Arabidopsis ARF1 confers high-affinity binding to individual DNA sites. We demonstrate the importance of AuxRE cooperativity within repeats in the Arabidopsis TMO5 and IAA11 promoters in vivo. Meta-analysis of transcriptomes further reveals strong genome-wide association of auxin response with both inverted (IR) and direct (DR) AuxRE repeats, which we experimentally validated. The association of these elements with auxin-induced up-regulation (DR and IR) or down-regulation (IR) was correlated with differential binding affinities of A-class and B-class ARFs, respectively, suggesting a mechanistic basis for the distinct activity of these repeats. Our results support the relevance of high-affinity binding of ARF transcription factors to uniquely spaced DNA elements in vivo, and suggest that differential binding affinities of ARF subfamilies underlie diversity in cis-element function.


1999 ◽  
Vol 181 (23) ◽  
pp. 7266-7273 ◽  
Author(s):  
Igor N. Olekhnovich ◽  
Robert J. Kadner

ABSTRACT Fundamental questions in bacterial gene regulation concern how multiple regulatory proteins interact with the transcription apparatus at a single promoter and what are the roles of protein contacts with RNA polymerase and changes in DNA conformation. Transcription of theEscherichia coli uhpT gene, encoding the inducible sugar phosphate transporter, is dependent on the response regulator UhpA and is stimulated by the cyclic AMP receptor protein (CAP). UhpA binds to multiple sites in the uhpT promoter between positions −80 and −32 upstream of the transcription start site, and CAP binds to a single site centered at position −103.5. The role in uhpTtranscription of portions of RNA polymerase Eς70holoenzyme which affect regulation at other promoters was examined by using series of alanine substitutions throughout the C-terminal domains of RpoA (residues 255 to 329) and of RpoD (residues 570 to 613). Alanine substitutions that affected in vivo expression of auhpT-lacZ transcriptional fusion were tested for their effect on in vitro transcription activity by using reconstituted holoenzymes. Consistent with the binding of UhpA near the −35 region, residues K593 and K599 in the C-terminal region of RpoD were necessary for efficient uhpT expression in response to UhpA alone. Their requirement was overcome when CAP was also present. In addition, residues R265, G296, and S299 in the DNA-binding surface of the C-terminal domain of RpoA (αCTD) were important for uhpTtranscription even in the presence of CAP. Substitutions at several other positions had effects in cells but not during in vitro transcription with saturating levels of the transcription factors. Two DNase-hypersensitive sites near the upstream end of the UhpA-binding region were seen in the presence of all three transcription factors. Their appearance required functional αCTD but not the presence of upstream DNA. These results suggest that both transcription activators depend on or interact with different subunits of RNA polymerase, although their role in formation of proper DNA geometry may also be crucial.


Sign in / Sign up

Export Citation Format

Share Document