scholarly journals Regulation of Pseudomonas Quinolone Signal Synthesis in Pseudomonas aeruginosa

2005 ◽  
Vol 187 (13) ◽  
pp. 4372-4380 ◽  
Author(s):  
Dana S. Wade ◽  
M. Worth Calfee ◽  
Edson R. Rocha ◽  
Elizabeth A. Ling ◽  
Elana Engstrom ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in cystic fibrosis patients and is a major source of nosocomial infections. This bacterium controls many virulence factors by using two quorum-sensing systems, las and rhl. The las system is composed of the LasR regulator protein and its cell-to-cell signal, N-(3-oxododecanoyl) homoserine lactone, and the rhl system is composed of RhlR and the signal N-butyryl homoserine lactone. A third intercellular signal, the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4-quinolone), also regulates numerous virulence factors. PQS synthesis requires the expression of multiple operons, one of which is pqsABCDE. Previous experiments showed that the transcription of this operon, and therefore PQS production, is negatively regulated by the rhl quorum-sensing system and positively regulated by the las quorum-sensing system and PqsR (also known as MvfR), a LysR-type transcriptional regulator protein. With the use of DNA mobility shift assays and β-galactosidase reporter fusions, we have studied the regulation of pqsR and its relationship to pqsA, lasR, and rhlR. We show that PqsR binds the promoter of pqsA and that this binding increases dramatically in the presence of PQS, implying that PQS acts as a coinducer for PqsR. We have also mapped the transcriptional start site for pqsR and found that the transcription of pqsR is positively regulated by lasR and negatively regulated by rhlR. These results suggest that a regulatory chain occurs where pqsR is under the control of LasR and RhlR and where PqsR in turn controls pqsABCDE, which is required for the production of PQS.

2008 ◽  
Vol 190 (21) ◽  
pp. 7043-7051 ◽  
Author(s):  
John M. Farrow ◽  
Zoe M. Sund ◽  
Matthew L. Ellison ◽  
Dana S. Wade ◽  
James P. Coleman ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that causes both acute and chronic infections in immunocompromised individuals. This gram-negative bacterium produces a battery of virulence factors that allow it to infect and survive in many different hostile environments. The control of many of these virulence factors falls under the influence of one of three P. aeruginosa cell-to-cell signaling systems. The focus of this study, the quinolone signaling system, functions through the Pseudomonas quinolone signal (PQS), previously identified as 2-heptyl-3-hydroxy-4-quinolone. This signal binds to and activates the LysR-type transcriptional regulator PqsR (also known as MvfR), which in turn induces the expression of the pqsABCDE operon. The first four genes of this operon are required for PQS synthesis, but the fifth gene, pqsE, is not. The function of the pqsE gene is not known, but it is required for the production of multiple PQS-controlled virulence factors and for virulence in multiple models of infection. In this report, we show that PqsE can activate PQS-controlled genes in the absence of PqsR and PQS. Our data also suggest that the regulatory activity of PqsE requires RhlR and indicate that a pqsE mutant can be complemented for pyocyanin production by a large excess of exogenous N-butyryl homoserine lactone (C4-HSL). Finally, we show that PqsE enhances the ability of Escherichia coli expressing RhlR to respond to C4-HSL. Overall, our data lead us to conclude that PqsE functions as a regulator that is independent of PqsR and PQS but dependent on the rhl quorum-sensing system.


2000 ◽  
Vol 182 (10) ◽  
pp. 2702-2708 ◽  
Author(s):  
Susan L. McKnight ◽  
Barbara H. Iglewski ◽  
Everett C. Pesci

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa uses intercellular signals to control the density-dependent expression of many virulence factors. The las and rhlquorum-sensing systems function, respectively, through the autoinducersN-(3-oxododecanoyl)-l-homoserine lactone andN-butyryl-l-homoserine lactone (C4-HSL), which are known to positively regulate the transcription of the elastase-encoding gene, lasB. Recently, we reported that a second type of intercellular signal is involved in lasB induction. This signal was identified as 2-heptyl-3-hydroxy-4-quinolone and designated thePseudomonas quinolone signal (PQS). PQS was determined to be part of the quorum-sensing hierarchy since its production and bioactivity depended on the las and rhlquorum-sensing systems, respectively. In order to define the role of PQS in the P. aeruginosa quorum-sensing cascade,lacZ gene fusions were used to determine the effect of PQS on the transcription of the quorum-sensing system geneslasR, lasI, rhlR, andrhlI. We found that in P. aeruginosa, PQS caused a major induction of rhlI′-lacZ and had lesser effects on the transcription of lasR′-lacZ andrhlR′-lacZ. We also observed that the transcription of bothrhlI′-lacZ and lasB′-lacZ was cooperatively effected by C4-HSL and PQS. Additionally, we present data indicating that PQS was not produced maximally until cultures reached the late stationary phase of growth. Taken together, our results imply that PQS acts as a link between the las and rhlquorum-sensing systems and that this signal is not involved in sensing cell density.


2007 ◽  
Vol 189 (21) ◽  
pp. 7752-7764 ◽  
Author(s):  
Lisa A. Morici ◽  
Alexander J. Carterson ◽  
Victoria E. Wagner ◽  
Anders Frisk ◽  
Jill R. Schurr ◽  
...  

ABSTRACT AlgR controls numerous virulence factors in Pseudomonas aeruginosa, including alginate, hydrogen cyanide production, and type IV pilus-mediated twitching motility. In this study, the role of AlgR in biofilms was examined in continuous-flow and static biofilm assays. Strain PSL317 (ΔalgR) produced one-third the biofilm biomass of wild-type strain PAO1. Complementation with algR, but not fimTU-pilVWXY1Y2E, restored PSL317 to the wild-type biofilm phenotype. Comparisons of the transcriptional profiles of biofilm-grown PAO1 and PSL317 revealed that a number of quorum-sensing genes were upregulated in the algR deletion strain. Measurement of rhlA::lacZ and rhlI::lacZ promoter fusions confirmed the transcriptional profiling data when PSL317 was grown as a biofilm, but not planktonically. Increased amounts of rhamnolipids and N-butyryl homoserine lactone were detected in the biofilm effluent but not the planktonic supernatants of the algR mutant. Additionally, AlgR specifically bound to the rhlA and rhlI promoters in mobility shift assays. Moreover, PAO1 containing a chromosomal mutated AlgR binding site in its rhlI promoter formed biofilms and produced increased amounts of rhamnolipids similarly to the algR deletion strain. These observations indicate that AlgR specifically represses the Rhl quorum-sensing system during biofilm growth and that such repression is necessary for normal biofilm development. These data also suggest that AlgR may control transcription in a contact-dependent or biofilm-specific manner.


2013 ◽  
Vol 62 (3) ◽  
pp. 243-251 ◽  
Author(s):  
LIN LIHUA ◽  
WANG JIANHUI ◽  
YU JIALIN ◽  
LI YAYIN ◽  
LIU GUANXIN

The Gram-negative Pseudomonas aeruginosa bacterial pathogen is reputed for its resistance to multiple antibiotics, and this property is strongly associated with the development of biofilms. Bacterial biofilms form by aggregation of microorganisms on a solid surface and secretion of an extracellular polysaccharide substances that acts as a physical protection barrier for the encased bacteria. In addition, the P aeruginosa quorum-sensing system contributes to antibiotic resistance by regulating the expression of several virulence factors, including exotoxin A, elastase, pyoverdin and rhamnolipid. The organosulfur compound allicin, derived from garlic, has been shown to inhibit both surface-adherence of bacteria and production of virulence factors. In this study, the effects of allicin on P aeruginosa biofilm formation and the production of quorum-sensing controlled virulence factors were investigated. The results demonstrated that allicin could inhibit early bacterial adhesion, reduce EPS secretion, and down-regulate virulence factors' production. Collectively, these findings suggest the potential of allicin as a therapeutic agent for controlling P aeruginosa biofilm.


2007 ◽  
Vol 189 (13) ◽  
pp. 4969-4972 ◽  
Author(s):  
Masanori Toyofuku ◽  
Nobuhiko Nomura ◽  
Tatsuya Fujii ◽  
Naoki Takaya ◽  
Hideaki Maseda ◽  
...  

ABSTRACT Anaerobic growth of Pseudomonas aeruginosa PAO1 was affected by quorum sensing. Deletion of genes that produce N-acyl-l-homoserine lactone signals resulted in an increase in denitrification activity, which was repressed by exogenous signal molecules. The effect of the las quorum-sensing system was dependent on the rhl quorum-sensing system in regulating denitrification.


Microbiology ◽  
2011 ◽  
Vol 157 (7) ◽  
pp. 2120-2132 ◽  
Author(s):  
Olivier M. Vandeputte ◽  
Martin Kiendrebeogo ◽  
Tsiry Rasamiravaka ◽  
Caroline Stévigny ◽  
Pierre Duez ◽  
...  

Preliminary screening of the Malagasy plant Combretum albiflorum for compounds attenuating the production of quorum sensing (QS)-controlled virulence factors in bacteria led to the identification of active fractions containing flavonoids. In the present study, several flavonoids belonging to the flavone, flavanone, flavonol and chalcone structural groups were screened for their capacity to reduce the production of QS-controlled factors in the opportunistic pathogen Pseudomonas aeruginosa (strain PAO1). Flavanones (i.e. naringenin, eriodictyol and taxifolin) significantly reduced the production of pyocyanin and elastase in P. aeruginosa without affecting bacterial growth. Consistently, naringenin and taxifolin reduced the expression of several QS-controlled genes (i.e. lasI, lasR, rhlI, rhlR, lasA, lasB, phzA1 and rhlA) in P. aeruginosa PAO1. Naringenin also dramatically reduced the production of the acylhomoserine lactones N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-l-homoserine lactone (C4-HSL), which is driven by the lasI and rhlI gene products, respectively. In addition, using mutant strains deficient for autoinduction (ΔlasI and ΔrhlI) and LasR- and RhlR-based biosensors, it was shown that QS inhibition by naringenin not only is the consequence of a reduced production of autoinduction compounds but also results from a defect in the proper functioning of the RlhR–C4-HSL complex. Widely distributed in the plant kingdom, flavonoids are known for their numerous and determinant roles in plant physiology, plant development and in the success of plant–rhizobia interactions, but, as shown here, some of them also have a role as inhibitors of the virulence of pathogenic bacteria by interfering with QS mechanisms.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1873
Author(s):  
Weina Kong ◽  
Qianqian Tian ◽  
Qiaoli Yang ◽  
Yu Liu ◽  
Gongting Wang ◽  
...  

Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, is commonly found in clinical settings and immuno-compromised patients. It is difficult to be eradicated due to its strong antibiotic resistance, and novel inactivation strategies have yet to be developed. Selenium is an essential microelement for humans and has been widely used in dietary supplement and chemoprevention therapy. In this study, the physiological and biochemical effects of sodium selenite on P. aeruginosa PAO1 were investigated. The results showed that 0~5 mM sodium selenite did not impact the growth of PAO1, but increased the lethality rate of PAO1 with antibiotics or H2O2 treatment and the antibiotics susceptibility both in planktonic and biofilm states. In addition, sodium selenite significantly reduced the expression of quorum sensing genes and inhibited various virulence factors of this bacterium, including pyocyanin production, bacterial motilities, and the type III secretion system. Further investigation found that the content of ROS in cells was significantly increased and the expression levels of most genes involved in oxidative stress were up-regulated, which indicated that sodium selenite induced oxidative stress. The RNA-seq result confirmed the phenotypes of virulence attenuation and the expression of quorum sensing and antioxidant-related genes. The assays of Chinese cabbage and Drosophila melanogaster infection models showed that the combination of sodium selenite and antibiotics significantly alleviated the infection of PAO1. In summary, the results revealed that sodium selenite induced oxidative stress and inhibited the quorum sensing system of P. aeruginosa, which in turn enhanced the antibiotic susceptibility and decreased the pathogenicity of this bacterium. These findings suggest that sodium selenite may be used as an effective strategy for adjunct treatment of the infections caused by P. aeruginosa.


Author(s):  
Rhea G. Abisado ◽  
John H. Kimbrough ◽  
Brielle M. McKee ◽  
Vaughn D. Craddock ◽  
Nicole E. Smalley ◽  
...  

The Pseudomonas aeruginosa LasR-I quorum-sensing system regulates secreted proteases that can be exploited by cheaters, such as quorum sensing receptor-defective (lasR) mutants. lasR mutants emerge in populations growing on casein as a sole source of carbon and energy. These mutants are exploitative cheaters because they avoid the substantial cost of engaging in quorum sensing. Previous studies showed that quorum sensing increases resistance to some antibiotics, such as tobramycin. Here, we show that tobramycin suppressed the emergence of lasR mutants in casein-passaged populations. Several mutations accumulated in those populations indicating evidence of antibiotic adaptation. We found that mutations in one gene, ptsP, increased antibiotic resistance and also pleiotropically increased production of a quorum sensing-controlled phenazine, pyocyanin. When passaged on casein, ptsP mutants suppressed cheaters in a manner that was tobramycin independent. We found the mechanism of cheater suppression in ptsP mutants relied on pyocyanin, which acts as a policing toxin by selectively blocking growth of cheaters. Thus, tobramycin suppresses lasR mutants through two mechanisms: first, through direct effects on cheaters and second, by selecting mutations in ptsP that suppressed cheating in a tobramycin-independent manner. This work demonstrates how adaptive mutations can alter the dynamics of cooperator-cheater relationships, which might be important for populations adapting to antibiotics during interspecies competition or infections. IMPORTANCE The opportunistic pathogen Pseudomonas aeruginosa is a model for understanding quorum sensing, a type of cell-cell signaling important for cooperation. Quorum sensing controls production of cooperative goods, such as exoenzymes, which are vulnerable to cheating by quorum sensing-defective mutants. Because uncontrolled cheating can ultimately cause a population to collapse, much focus has been on understanding how P. aeruginosa can control cheaters. We show that an antibiotic, tobramycin, can suppress cheaters in cooperating P. aeruginosa populations. Tobramycin suppresses cheaters directly because the cheaters are more susceptible to tobramycin than cooperators. Tobramycin also selects for mutations in a gene, ptsP, that suppresses cheaters independent of tobramycin through pleiotropic regulation of a policing toxin, pyocyanin. This work supports the idea that adaptation to antibiotics can have unexpected effects on the evolution of quorum sensing and has implications for understanding how cooperation evolves in dynamic bacterial communities.


1998 ◽  
Vol 66 (6) ◽  
pp. 2521-2528 ◽  
Author(s):  
Douglas G. Storey ◽  
Eva E. Ujack ◽  
Harvey R. Rabin ◽  
Ian Mitchell

ABSTRACT The role of Pseudomonas aeruginosa quorum-sensing systems in the lung infections associated with cystic fibrosis (CF) has not been examined. The purpose of this study was to determine if genes regulated by the LasR-LasI quorum-sensing system were coordinately regulated by the P. aeruginosa populations during the lung infections associated with CF. We also wanted to ascertain if there was a relationship between the expression of lasR, a transcriptional regulator, and some P. aeruginosa virulence factors during these infections. We extracted RNAs from the bacterial populations of 131 sputa taken from 23 CF patients. These RNAs were blotted and hybridized with probes to P. aeruginosa lasA,lasB, and toxA. The hybridization signals from each probe were ranked, and the rankings were analyzed by a Spearman rank correlation to determine if there was an association between the population transcript accumulations for the three genes. The correlations between the transcript accumulation patterns of pairs of the genes suggested that lasA, lasB, andtoxA might be coordinately regulated during CF lung infections. To determine if this coordinate regulation might be due to regulation by LasR, we probed RNAs, extracted from 84 sputa, with thelasR, lasA, lasB, toxA, and algD probes. Statistical analysis indicated thatlasR transcript accumulation correlated tolasA, lasB, toxA, andalgD transcript accumulations. These results indicated thatlasR may at least partially regulate or be coordinately regulated with lasA, lasB, toxA, and algD during the lung infections associated with CF. These results also suggested that the LasR-LasI quorum-sensing system may control the expression of at least some virulence factors in the lungs of patients with CF.


Sign in / Sign up

Export Citation Format

Share Document