scholarly journals Quorum-Sensing-Negative (lasR) Mutants of Pseudomonas aeruginosa Avoid Cell Lysis and Death

2005 ◽  
Vol 187 (14) ◽  
pp. 4875-4883 ◽  
Author(s):  
Karin Heurlier ◽  
Valérie Dénervaud ◽  
Marisa Haenni ◽  
Lionel Guy ◽  
Viji Krishnapillai ◽  
...  

ABSTRACT In Pseudomonas aeruginosa, N-acylhomoserine lactone signals regulate the expression of several hundreds of genes, via the transcriptional regulator LasR and, in part, also via the subordinate regulator RhlR. This regulatory network termed quorum sensing contributes to the virulence of P. aeruginosa as a pathogen. The fact that two supposed PAO1 wild-type strains from strain collections were found to be defective for LasR function because of independent point mutations in the lasR gene led to the hypothesis that loss of quorum sensing might confer a selective advantage on P. aeruginosa under certain environmental conditions. A convenient plate assay for LasR function was devised, based on the observation that lasR mutants did not grow on adenosine as the sole carbon source because a key degradative enzyme, nucleoside hydrolase (Nuh), is positively controlled by LasR. The wild-type PAO1 and lasR mutants showed similar growth rates when incubated in nutrient yeast broth at pH 6.8 and 37°C with good aeration. However, after termination of growth during 30 to 54 h of incubation, when the pH rose to ≥ 9, the lasR mutants were significantly more resistant to cell lysis and death than was the wild type. As a consequence, the lasR mutant-to-wild-type ratio increased about 10-fold in mixed cultures incubated for 54 h. In a PAO1 culture, five consecutive cycles of 48 h of incubation sufficed to enrich for about 10% of spontaneous mutants with a Nuh− phenotype, and five of these mutants, which were functionally complemented by lasR + , had mutations in lasR. The observation that, in buffered nutrient yeast broth, the wild type and lasR mutants exhibited similar low tendencies to undergo cell lysis and death suggests that alkaline stress may be a critical factor providing a selective survival advantage to lasR mutants.

2008 ◽  
Vol 74 (6) ◽  
pp. 1902-1908 ◽  
Author(s):  
Áine Fox ◽  
Dieter Haas ◽  
Cornelia Reimmann ◽  
Stephan Heeb ◽  
Alain Filloux ◽  
...  

ABSTRACT Pseudomonas aeruginosa undergoes spontaneous mutation that impairs secretion of several extracellular enzymes during extended cultivation in vitro in rich media, as well as during long-term colonization of the cystic fibrosis lung. A frequent type of strong secretion deficiency is caused by inactivation of the quorum-sensing regulatory gene lasR. Here we analyzed a spontaneously emerging subline of strain PAO1 that exhibited moderate secretion deficiency and partial loss of quorum-sensing control. Using generalized transduction, we mapped the secretion defect to the vfr gene, which is known to control positively the expression of the lasR gene and type II secretion of several proteases. We confirmed this secretion defect by sequencing and complementation of the vfr mutation. In a reconstruction experiment conducted with a 1:1 mixture of wild-type strain PAO1 and a vfr mutant of PAO1, we observed that the vfr mutant had a selective advantage over the wild type after growth in static culture for 4 days. Under these conditions, spontaneous vfr emerged in a strain PAO1 population after four growth cycles, and these mutants accounted for more than 40% of the population after seven cycles. These results suggest that partial or complete loss of quorum sensing and secretion can be beneficial to P. aeruginosa under certain environmental conditions.


2019 ◽  
Vol 36 (10) ◽  
pp. 2238-2251 ◽  
Author(s):  
Sara Hernando-Amado ◽  
Fernando Sanz-García ◽  
José Luis Martínez

Abstract Different works have explored independently the evolution toward antibiotic resistance and the role of eco-adaptive mutations in the adaptation to a new habitat (as the infected host) of bacterial pathogens. However, knowledge about the connection between both processes is still limited. We address this issue by comparing the evolutionary trajectories toward antibiotic resistance of a Pseudomonas aeruginosa lasR defective mutant and its parental wild-type strain, when growing in presence of two ribosome-targeting antibiotics. Quorum-sensing lasR defective mutants are selected in P. aeruginosa populations causing chronic infections. Further, we observed they are also selected in vitro as a first adaptation for growing in culture medium. By using experimental evolution and whole-genome sequencing, we found that the evolutionary trajectories of P. aeruginosa in presence of these antibiotics are different in lasR defective and in wild-type backgrounds, both at the phenotypic and the genotypic levels. Recreation of a set of mutants in both genomic backgrounds (either wild type or lasR defective) allowed us to determine the existence of negative epistatic interactions between lasR and antibiotic resistance determinants. These epistatic interactions could lead to mutual contingency in the evolution of antibiotic resistance when P. aeruginosa colonizes a new habitat in presence of antibiotics. If lasR mutants are selected first, this would constraint antibiotic resistance evolution. Conversely, when resistance mutations (at least those studied in the present work) are selected, lasR mutants may not be selected in presence of antibiotics. These results underlie the importance of contingency and epistatic interactions in modulating antibiotic resistance evolution.


2019 ◽  
Vol 87 (10) ◽  
Author(s):  
Franziska S. Birmes ◽  
Ruth Säring ◽  
Miriam C. Hauke ◽  
Niklas H. Ritzmann ◽  
Steffen L. Drees ◽  
...  

ABSTRACT The nosocomial pathogen Pseudomonas aeruginosa regulates its virulence via a complex quorum sensing network, which, besides N-acylhomoserine lactones, includes the alkylquinolone signal molecules 2-heptyl-3-hydroxy-4(1H)-quinolone (Pseudomonas quinolone signal [PQS]) and 2-heptyl-4(1H)-quinolone (HHQ). Mycobacteroides abscessus subsp. abscessus, an emerging pathogen, is capable of degrading the PQS and also HHQ. Here, we show that although M. abscessus subsp. abscessus reduced PQS levels in coculture with P. aeruginosa PAO1, this did not suffice for quenching the production of the virulence factors pyocyanin, pyoverdine, and rhamnolipids. However, the levels of these virulence factors were reduced in cocultures of P. aeruginosa PAO1 with recombinant M. abscessus subsp. massiliense overexpressing the PQS dioxygenase gene aqdC of M. abscessus subsp. abscessus, corroborating the potential of AqdC as a quorum quenching enzyme. When added extracellularly to P. aeruginosa cultures, AqdC quenched alkylquinolone and pyocyanin production but induced an increase in elastase levels. When supplementing P. aeruginosa cultures with QsdA, an enzyme from Rhodococcus erythropolis which inactivates N-acylhomoserine lactone signals, rhamnolipid and elastase levels were quenched, but HHQ and pyocyanin synthesis was promoted. Thus, single quorum quenching enzymes, targeting individual circuits within a complex quorum sensing network, may also elicit undesirable regulatory effects. Supernatants of P. aeruginosa cultures grown in the presence of AqdC, QsdA, or both enzymes were less cytotoxic to human epithelial lung cells than supernatants of untreated cultures. Furthermore, the combination of both aqdC and qsdA in P. aeruginosa resulted in a decline of Caenorhabditis elegans mortality under P. aeruginosa exposure.


2000 ◽  
Vol 182 (15) ◽  
pp. 4356-4360 ◽  
Author(s):  
Marvin Whiteley ◽  
Matthew R. Parsek ◽  
E. P. Greenberg

ABSTRACT The LasR-LasI and RhlR-RhlI quorum-sensing systems are global regulators of gene expression in the opportunistic pathogenPseudomonas aeruginosa. Previous studies suggest that the RhlR-RhlI system activates expression of rpoS. We constructed merodiploid strains of P. aeruginosa containing the native rpoS gene and an rpoS-lacZ fusion. Studies of lacZ transcription in these strains indicated that rpoS was not regulated by RhlR-RhlI. We also generated an rpoS null mutant. This rpoS mutant showed elevated levels of rhlI (but not rhlR) transcription, elevated levels of the RhlI-generated acylhomoserine lactone quorum-sensing signal, and elevated levels of RhlR-RhlI-regulated gene transcription. These findings indicate that there is a relationship between RpoS and quorum sensing, but rather than the RhlR-RhlI system influencing the expression ofrpoS, it appears that RpoS regulates rhlI.


2002 ◽  
Vol 184 (13) ◽  
pp. 3605-3613 ◽  
Author(s):  
Scott A. Beatson ◽  
Cynthia B. Whitchurch ◽  
Jennifer L. Sargent ◽  
Roger C. Levesque ◽  
John S. Mattick

ABSTRACT Vfr, a homolog of Escherichia coli cyclic AMP (cAMP) receptor protein, has been shown to regulate quorum sensing, exotoxin A production, and regA transcription in Pseudomonas aeruginosa. We identified a twitching motility-defective mutant that carries a transposon insertion in vfr and confirmed that vfr is required for twitching motility by construction of an independent allelic deletion-replacement mutant of vfr that exhibited the same phenotype, as well as by the restoration of normal twitching motility by complementation of these mutants with wild-type vfr. Vfr-null mutants exhibited severely reduced twitching motility with barely detectable levels of type IV pili, as well as loss of elastase production and altered pyocyanin production. We also identified reduced-twitching variants of quorum-sensing mutants (PAK lasI::Tc) with a spontaneous deletion in vfr (S. A. Beatson, C. B. Whitchurch, A. B. T. Semmler, and J. S. Mattick, J. Bacteriol., 184:3598-3604, 2002), the net result of which was the loss of five residues (EQERS) from the putative cAMP-binding pocket of Vfr. This allele (VfrΔEQERS) was capable of restoring elastase and pyocyanin production to wild-type levels in vfr-null mutants but not their defects in twitching motility. Furthermore, structural analysis of Vfr and VfrΔEQERS in relation to E. coli CRP suggests that Vfr is capable of binding both cAMP and cyclic GMP whereas VfrΔEQERS is only capable of responding to cAMP. We suggest that Vfr controls twitching motility and quorum sensing via independent pathways in response to these different signals, bound by the same cyclic nucleotide monophosphate-binding pocket.


2015 ◽  
Vol 197 (12) ◽  
pp. 2072-2082 ◽  
Author(s):  
Peter W. Davenport ◽  
Julian L. Griffin ◽  
Martin Welch

ABSTRACTPseudomonas aeruginosausesN-acyl-homoserine lactone (AHL)-dependent quorum sensing (QS) systems to control the expression of secreted effectors. These effectors can be crucial to the ecological fitness of the bacterium, playing roles in nutrient acquisition, microbial competition, and virulence. In this study, we investigated the metabolic consequences of AHL-dependent QS by monitoring the metabolic profile(s) of alasI rhlIdouble mutant (unable to make QS signaling molecules) and its wild-type progenitor as they progressed through the growth curve. Analysis of culture supernatants by1H-nuclear magnetic resonance (1H-NMR) spectroscopy revealed that at the point where AHL concentrations peaked in the wild type, the metabolic footprints (i.e., extracellular metabolites) of the wild-type andlasI rhlImutant diverged. Subsequent gas chromatography-mass spectrometry (GC-MS)-based analysis of the intracellular metabolome revealed QS-dependent perturbations in around one-third of all identified metabolites, including altered concentrations of tricarboxylic acid (TCA) cycle intermediates, amino acids, and fatty acids. Further targeted fatty acid methyl ester (FAME) GC-MS-based profiling of the cellular total fatty acid pools revealed that QS leads to changes associated with decreased membrane fluidity and higher chemical stability. However, not all of the changes we observed were necessarily a direct consequence of QS; liquid chromatography (LC)-MS analyses revealed that polyamine levels were elevated in thelasI rhlImutant, perhaps a response to the absence of QS-dependent adaptations. Our data suggest that QS leads to a global readjustment in central metabolism and provide new insight into the metabolic changes associated with QS during stationary-phase adaptation.IMPORTANCEQuorum sensing (QS) is a transcriptional regulatory mechanism that allows bacteria to coordinate their gene expression profile with the population cell density. The opportunistic human pathogenPseudomonas aeruginosauses QS to control the production of secreted virulence factors. In this study, we show that QS elicits a global “metabolic rewiring” inP. aeruginosa. This metabolic rerouting of fluxes is consistent with a variety of drivers, ranging from altered QS-dependent transcription of “metabolic genes” through to the effect(s) of global “metabolic readjustment” as a consequence of QS-dependent exoproduct synthesis, as well as a general stress response, among others. To our knowledge, this is the first study of its kind to assess the global impact of QS on the metabolome.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Rebecca L. Scholz ◽  
E. Peter Greenberg

ABSTRACTMany proteobacteria utilize acyl-homoserine lactone quorum-sensing signals. At low population densities, cells produce a basal level of signal, and when sufficient signal has accumulated in the surrounding environment, it binds to its receptor, and quorum-sensing-dependent genes can be activated. A common characteristic of acyl-homoserine lactone quorum sensing is that signal production is positively autoregulated. We have examined the role of positive signal autoregulation inPseudomonas aeruginosa. We compared population responses and individual cell responses in populations of wild-typeP. aeruginosato responses in a strain with the signal synthase gene controlled by an arabinose-inducible promoter so that signal was produced at a constant rate per cell regardless of cell population density. At a population level, responses of the wild type and the engineered strain were indistinguishable, but the responses of individual cells in a population of the wild type showed greater synchrony than the responses of the engineered strain. Although sufficient signal is required to activate expression of quorum-sensing-regulated genes, it is not sufficient for activation of certain genes, the late genes, and their expression is delayed until other conditions are met. We found that late gene responses were reduced in the engineered strain. We conclude that positive signal autoregulation is not a required element in acyl-homoserine lactone quorum sensing, but it functions to enhance synchrony of the responses of individuals in a population. Synchrony might be advantageous in some situations, whereas a less coordinated quorum-sensing response might allow bet hedging and be advantageous in other situations.IMPORTANCEThere are many quorum-sensing systems that involve a transcriptional activator, which responds to an acyl-homoserine lactone signal. In all of the examples studied, the gene coding for signal production is positively autoregulated by the signal, and it has even been described as essential for a quorum-sensing response. We have used the opportunistic pathogenPseudomonas aeruginosaas a model to show that positive autoregulation is not required for a robust quorum-sensing response. We also show that positive autoregulation of signal production enhances the synchrony of the response. This information enhances our general understanding of the biological significance of how acyl-homoserine lactone quorum-sensing circuits are arranged.


2016 ◽  
Vol 12 ◽  
pp. 1428-1433 ◽  
Author(s):  
Bernardas Morkunas ◽  
Balint Gal ◽  
Warren R J D Galloway ◽  
James T Hodgkinson ◽  
Brett M Ibbeson ◽  
...  

Pyocyanin is a small molecule produced by Pseudomonas aeruginosa that plays a crucial role in the pathogenesis of infections by this notorious opportunistic pathogen. The inhibition of pyocyanin production has been identified as an attractive antivirulence strategy for the treatment of P. aeruginosa infections. Herein, we report the discovery of an inhibitor of pyocyanin production in cultures of wild-type P. aeruginosa which is based around a 4-alkylquinolin-2(1H)-one scaffold. To the best of our knowledge, this is the first reported example of pyocyanin inhibition by a compound based around this molecular framework. The compound may therefore be representative of a new structural sub-class of pyocyanin inhibitors, which could potentially be exploited in in a therapeutic context for the development of critically needed new antipseudomonal agents. In this context, the use of wild-type cells in this study is notable, since the data obtained are of direct relevance to native situations. The compound could also be of value in better elucidating the role of pyocyanin in P. aeruginosa infections. Evidence suggests that the active compound reduces the level of pyocyanin production by inhibiting the cell–cell signalling mechanism known as quorum sensing. This could have interesting implications; quorum sensing regulates a range of additional elements associated with the pathogenicity of P. aeruginosa and there is a wide range of other potential applications where the inhibition of quorum sensing is desirable.


2001 ◽  
Vol 183 (19) ◽  
pp. 5529-5534 ◽  
Author(s):  
Marvin Whiteley ◽  
E. P. Greenberg

ABSTRACT The LasR-dependent and RhlR-dependent quorum-sensing systems are global regulators of gene expression in Pseudomonas aeruginosa. Previous studies have demonstrated that promoter elements of the quorum-sensing-controlled genes lasB andhcnABC are important in density-dependent regulation. We have identified LasR- and RhlR-dependent determinants in promoters of quorum-sensing-controlled genes qsc102, qsc117 (acpP), and qsc131 (phzA to -G) by in silico, deletion, point-mutational, and primer extension analyses. Each of these genes (in addition tolasI and rsaL) is activated by LasR, and qsc117 and qsc131 also respond to RhlR. Point mutations in the promoters of the LasR-specific gene, qsc102, relax specificity so that this promoter can respond to RhlR in addition to LasR. Our findings indicate that quorum-sensing-controlled promoters in P. aeruginosa are either specific for LasR or respond to both LasR and RhlR and that critical bases in the promoter elements determine specificity.


Microbiology ◽  
2011 ◽  
Vol 157 (4) ◽  
pp. 1176-1186 ◽  
Author(s):  
Akshamal Mihiranga Gamage ◽  
Guanghou Shui ◽  
Markus R. Wenk ◽  
Kim Lee Chua

The genome of Burkholderia pseudomallei encodes three acylhomoserine lactone (AHL) quorum sensing systems, each comprising an AHL synthase and a signal receptor/regulator. The BpsI–BpsR system produces N-octanoylhomoserine lactone (C8HL) and is positively auto-regulated by its AHL product. The products of the remaining two systems have not been identified. In this study, tandem MS was used to identify and quantify the AHL species produced by three clinical B. pseudomallei isolates – KHW, K96243 and H11 – three isogenic KHW mutants that each contain a null mutation in an AHL synthase gene, and recombinant Escherichia coli heterologously expressing each of the three B. pseudomallei AHL synthase genes. BpsI synthesized predominantly C8HL, which accounted for more than 95 % of the extracellular AHLs produced in stationary-phase KHW cultures. The major products of BpsI2 and BpsI3 were N-(3-hydroxy-octanoyl)homoserine lactone (OHC8HL) and N-(3-hydroxy-decanoyl)homoserine lactone, respectively, and their corresponding transcriptional regulators, BpsR2 and BpsR3, were capable of driving reporter gene expression in the presence of these cognate lactones. Formation of biofilm by B. pseudomallei KHW was severely impaired in mutants lacking either BpsI or BpsR but could be restored to near wild-type levels by exogenous C8HL. BpsI2 was not required, and BpsI3 was partially required for biofilm formation. Unlike the bpsI mutant, biofilm formation in the bpsI3 mutant could not be restored to wild-type levels in the presence of OHC8HL, the product of BpsI3. C8HL and OHC8HL had opposite effects on biofilm formation; exogenous C8HL enhanced biofilm formation in both the bpsI3 mutant and wild-type KHW while exogenous OHC8HL suppressed the formation of biofilm in the same strains. We propose that exogenous OHC8HL antagonizes biofilm formation in B. pseudomallei, possibly by competing with endogenous C8HL for binding to BpsR.


Sign in / Sign up

Export Citation Format

Share Document