scholarly journals Heat Shock Response of Archaeoglobus fulgidus

2005 ◽  
Vol 187 (17) ◽  
pp. 6046-6057 ◽  
Author(s):  
Lars Rohlin ◽  
Jonathan D. Trent ◽  
Kirsty Salmon ◽  
Unmi Kim ◽  
Robert P. Gunsalus ◽  
...  

ABSTRACT The heat shock response of the hyperthermophilic archaeon Archaeoglobus fulgidus strain VC-16 was studied using whole-genome microarrays. On the basis of the resulting expression profiles, approximately 350 of the 2,410 open reading frames (ORFs) (ca. 14%) exhibited increased or decreased transcript abundance. These span a range of cell functions, including energy production, amino acid metabolism, and signal transduction, where the majority are uncharacterized. One ORF called AF1298 was identified that contains a putative helix-turn-helix DNA binding motif. The gene product, HSR1, was expressed and purified from Escherichia coli and was used to characterize specific DNA recognition regions upstream of two A. fulgidus genes, AF1298 and AF1971. The results indicate that AF1298 is autoregulated and is part of an operon with two downstream genes that encode a small heat shock protein, Hsp20, and cdc48, an AAA+ ATPase. The DNase I footprints using HSR1 suggest the presence of a cis-binding motif upstream of AF1298 consisting of CTAAC-N5-GTTAG. Since AF1298 is negatively regulated in response to heat shock and encodes a protein only distantly related to the N-terminal DNA binding domain of Phr of Pyrococcus furiosus, these results suggest that HSR1 and Phr may belong to an evolutionarily diverse protein family involved in heat shock regulation in hyperthermophilic and mesophilic Archaea organisms.

2006 ◽  
Vol 188 (16) ◽  
pp. 5821-5830 ◽  
Author(s):  
Tie Koide ◽  
Ricardo Z. N. Vêncio ◽  
Suely L. Gomes

ABSTRACT Xylella fastidiosa is a phytopathogenic bacterium that is responsible for diseases in many economically important crops. Although different strains have been studied, little is known about X. fastidiosa stress responses. One of the better characterized stress responses in bacteria is the heat shock response, which induces the expression of specific genes to prevent protein misfolding and aggregation and to promote degradation of the irreversibly denatured polypeptides. To investigate X. fastidiosa genes involved in the heat shock response, we performed a whole-genome microarray analysis in a time course experiment. Globally, 261 genes were induced (9.7%) and 222 genes were repressed (8.3%). The expression profiles of the differentially expressed genes were grouped, and their expression patterns were validated by quantitative reverse transcription-PCR experiments. We determined the transcription start sites of six heat shock-inducible genes and analyzed their promoter regions, which allowed us to propose a putative consensus for σ32 promoters in Xylella and to suggest additional genes as putative members of this regulon. Besides the induction of classical heat shock protein genes, we observed the up-regulation of virulence-associated genes such as vapD and of genes for hemagglutinins, hemolysin, and xylan-degrading enzymes, which may indicate the importance of heat stress to bacterial pathogenesis. In addition, we observed the repression of genes related to fimbriae, aerobic respiration, and protein biosynthesis and the induction of genes related to the extracytoplasmic stress response and some phage-related genes, revealing the complex network of genes that work together in response to heat shock.


1991 ◽  
Vol 11 (1) ◽  
pp. 281-288 ◽  
Author(s):  
G J Gallo ◽  
T J Schuetz ◽  
R E Kingston

The heat shock response appears to be universal. All eucaryotes studied encode a protein, heat shock factor (HSF), that is believed to regulate transcription of heat shock genes. This protein binds to a regulatory sequence, the heat shock element, that is absolutely conserved among eucaryotes. We report here the identification of HSF in the fission yeast Schizosaccharomyces pombe. HSF binding was not observed in extracts from normally growing S. pombe (28 degrees C) but was detected in increasing amounts as the temperature of heat shock increased between 39 and 45 degrees C. This regulation is in contrast to that observed in Saccharomyces cerevisiae, in which HSF binding is detectable at both normal and heat shock temperatures. The S. pombe factor bound specifically to the heat shock element, as judged by methylation interference and DNase I protection analysis. The induction of S. pombe HSF was not inhibited by cycloheximide, suggesting that induction occurs posttranslationally, and the induced factor was shown to be phosphorylated. S. pombe HSF was purified to near homogeneity and was shown to have an apparent mobility of approximately 108 kDa. Since heat-induced DNA binding by HSF had previously been demonstrated only in metazoans, the conservation of heat-induced DNA binding by HSF among S. pombe and metazoans suggests that this mode of regulation is evolutionarily ancient.


2002 ◽  
Vol 184 (24) ◽  
pp. 6845-6858 ◽  
Author(s):  
Lixuan Huang ◽  
Michael P. McCluskey ◽  
Hao Ni ◽  
Robert A. LaRossa

ABSTRACT We developed a transcript profiling methodology to elucidate expression patterns of the cyanobacterium Synechocystis sp. strain PCC 6803 and used the technology to investigate changes in gene expression caused by irradiation with either intermediate-wavelength UV light (UV-B) or high-intensity white light. Several families of transcripts were altered by UV-B treatment, including mRNAs specifying proteins involved in light harvesting, photosynthesis, photoprotection, and the heat shock response. In addition, UV-B light induced the stringent response in Synechocystis, as indicated by the repression of ribosomal protein transcripts and other mRNAs involved in translation. High-intensity white light- and UV-B-mediated expression profiles overlapped in the down-regulation of photosynthesis genes and induction of heat shock response but differed in several other transcriptional processes including those specifying carbon dioxide uptake and fixation, the stringent response, and the induction profile of the high-light-inducible proteins. These two profile comparisons not only corroborated known physiological changes but also suggested coordinated regulation of many pathways, including synchronized induction of D1 protein recycling and a coupling between decreased phycobilisome biosynthesis and increased phycobilisome degradation. Overall, the gene expression profile analysis generated new insights into the integrated network of genes that adapts rapidly to different wavelengths and intensities of light.


2006 ◽  
Vol 84 (5) ◽  
pp. 703-712 ◽  
Author(s):  
Silvia Fossati ◽  
Laura Formentini ◽  
Zhao-Qi Wang ◽  
Flavio Moroni ◽  
Alberto Chiarugi

Poly(ADP-ribose) polymerase-1 (PARP-1)-dependent poly(ADP-ribose) formation is emerging as a key regulator of transcriptional regulation, even though the targets and underlying molecular mechanisms have not yet been clearly identified. In this study, we gathered information on the role of PARP-1 activity in the heat shock response of mouse fibroblasts. We show that DNA binding of heat shock factor (HSF)-1 was impaired by PARP-1 activity in cellular extracts, and was higher in PARP-1−/− than in PARP-1+/+ cells. No evidence for HSF-1 poly(ADP-ribosyl)ation or PARP-1 interaction was found, but a poly(ADP-ribose) binding motif was identified in the transcription factor amino acid sequence. Consistent with data on HSF-1, the expression of heat-shock protein (HSP)-70 and HSP–27 was facilitated in cells lacking PARP-1. Thermosensitivity, however, was higher in PARP-1−/− than in PARP-1+/+ cells. Accordingly, we report that heat-shocked PARP-1 null fibroblasts showed an increased activation of proapoptotic JNK and decreased transcriptional efficiency of prosurvival NF-κB compared with wild-type counterparts. The data indicate that poly(ADP-ribosyl)ation finely regulates HSF-1 activity, and emphasize the complex role of PARP-1 in the heat-shock response of mammalian cells.


2020 ◽  
Vol 8 (8) ◽  
pp. 1161
Author(s):  
Marta Palombo ◽  
Vincenzo Scarlato ◽  
Davide Roncarati

The heat-shock response is defined by the transient gene-expression program that leads to the rapid accumulation of heat-shock proteins. This evolutionary conserved response aims at the preservation of the intracellular environment and represents a crucial pathway during the establishment of host–pathogen interaction. In the food-borne pathogen Campylobacter jejuni two transcriptional repressors, named HspR and HrcA, are involved in the regulation of the major heat-shock genes. However, the molecular mechanism underpinning HspR and HrcA regulatory function has not been defined yet. In the present work, we assayed and mapped the HspR and HrcA interactions on heat-shock promoters by high-resolution DNase I footprintings, defining their regulatory circuit, which governs C. jejuni heat-shock response. We found that, while DNA-binding of HrcA covers a compact region enclosing a single inverted repeat similar to the so-called Controlling Inverted Repeat of Chaperone Expression (CIRCE) sequence, HspR interacts with multiple high- and low-affinity binding sites, which contain HspR Associated Inverted Repeat (HAIR)-like sequences. We also explored the DNA-binding properties of the two repressors competitively on their common targets and observed, for the first time, that HrcA and HspR can directly interact and their binding on co-regulated promoters occurs in a cooperative manner. This mutual cooperative mechanism of DNA binding could explain the synergic repressive effect of HspR and HrcA observed in vivo on co-regulated promoters. Peculiarities of the molecular mechanisms exerted by HspR and HrcA in C. jejuni are compared to the closely related bacterium H. pylori that uses homologues of the two regulators.


2018 ◽  
Vol 73 (5-6) ◽  
pp. 177-184 ◽  
Author(s):  
Masakazu Hara ◽  
Naoya Yamauchi ◽  
Yoshiki Sumita

Abstract Monoterpenes are common constituents of essential oils produced by plants. Although it has been reported that monoterpenes enhanced the heat tolerance of plants, the mechanism has not been elucidated. Here, we tested whether 13 monoterpenes promoted the heat shock response (HSR) in Arabidopsis. To assess the HSR-inducing activity of monoterpenes, we produced transgenic Arabidopsis, which has the β-glucuronidase gene driven by the promoter of a small heat shock protein (HSP17.6C-CI) gene. Results indicated that two monocyclic and four bicyclic monoterpenes showed HSR-inducing activities using the reporter gene system. In particular, (−)-perillaldehyde, which is a monocyclic monoterpene, demonstrated the most potent HSR-inducing activity. (−)-Perillaldehyde significantly inhibited the reduction of chlorophyll content by heat shock in Arabidopsis seedlings. Our previous study indicated that chemical HSR inducers such as geldanamycin and sanguinarine inhibited the activity of plant chaperones in vitro. (−)-Perillaldehyde also inhibited chaperone activity, indicating that it might promote the expression of heat shock protein genes by inhibiting chaperones in the plant cell.


2003 ◽  
Vol 69 (4) ◽  
pp. 2365-2371 ◽  
Author(s):  
Keith R. Shockley ◽  
Donald E. Ward ◽  
Swapnil R. Chhabra ◽  
Shannon B. Conners ◽  
Clemente I. Montero ◽  
...  

ABSTRACT Collective transcriptional analysis of heat shock response in the hyperthermophilic archaeon Pyrococcus furiosus was examined by using a targeted cDNA microarray in conjunction with Northern analyses. Differential gene expression suggests that P. furiosus relies on a cooperative strategy of rescue (thermosome [Hsp60], small heat shock protein [Hsp20], and two VAT-related chaperones), proteolysis (proteasome), and stabilization (compatible solute formation) to cope with polypeptide processing during thermal stress.


Author(s):  
Han Feng ◽  
Wei Liu ◽  
Da-Cheng Wang

Cells respond to various proteotoxic stimuli and maintain protein homeostasis through a conserved mechanism called the heat-shock response, which is characterized by the enhanced synthesis of heat-shock proteins. This response is mediated by heat-shock factors (HSFs). Four genes encoding HSF1–HSF4 exist in the genome of mammals. In this protein family, HSF1 is the orthologue of the single HSF in lower eukaryotic organisms and is the major regulator of the heat-shock response, while HSF2, which shows low sequence homology to HSF1, serves as a developmental regulator. Increasing evidence has revealed biochemical properties and functional roles that are unique to HSF2, such as its DNA-binding preference and sumoylation patterns, which are distinct from those of HSF1. The structural basis for such differences, however, is poorly understood owing to the lack of available mammalian HSF structures. The N-terminal DNA-binding domain (DBD) is the most conserved functional module and is the only crystallizable domain in HSFs. To date, only HSF1 homologue structures from yeast and fruit fly have been determined. Along with extensive studies of the HSF family, more structural information, particularly from members with a remoter phylogenic relationship to the reported structures,e.g.HSF2, is needed in order to better understand the detailed mechanisms of HSF biology. In this work, the recombinant DBD (residues 7–112) from human HSF2 was produced inEscherichia coliand crystallized. An X-ray diffraction data set was collected to 1.32 Å resolution from a crystal belonging to space groupP212121with unit cell-parametersa= 65.66,b= 67.26,c= 93.25 Å. The data-evaluation statistics revealed good quality of the collected data, thus establishing a solid basis for the determination of the first structure at atomic resolution in this protein family.


Sign in / Sign up

Export Citation Format

Share Document