scholarly journals Characterization of the Phd Repressor-Antitoxin Boundary

2005 ◽  
Vol 187 (2) ◽  
pp. 765-770 ◽  
Author(s):  
James Estle McKinley ◽  
Roy David Magnuson

ABSTRACT The P1 plasmid addiction operon (a classic toxin-antitoxin system) encodes Phd, an unstable 73-amino-acid repressor-antitoxin protein, and Doc, a stable toxin. It was previously shown by deletion analysis that the N terminus of Phd was required for repressor activity and that the C terminus was required for antitoxin activity. Since only a quarter of the protein or less was required for both activities, it was hypothesized that Phd might have a modular organization. To further test the modular hypothesis, we constructed and characterized a set of 30 point mutations in the third and fourth quarters of Phd. Four mutations (PhdA36H, V37A, I38A, and F44A) had major defects in repressor activity. Five mutations (PhdD53A, D53R, E55A, F56A, and F60A) had major defects in antitoxin activity. As predicted by the modular hypothesis, point mutations affecting each activity belonged to disjoint, rather than overlapping, sets and were separated rather than interspersed within the linear sequence. A final deletion experiment demonstrated that the C-terminal 24 amino acid residues of Phd (preceded by a methionine) retained full antitoxin activity.

2004 ◽  
Vol 186 (9) ◽  
pp. 2692-2698 ◽  
Author(s):  
Jeremy Allen Smith ◽  
Roy David Magnuson

ABSTRACT The P1 plasmid addiction operon is a compact genetic structure consisting of promoter, operator, antitoxin gene (phd), and toxin gene (doc). The 73-amino-acid antitoxin protein, Phd, has two distinct functions: it represses transcription (by binding to its operator) and it prevents host death (by binding and neutralizing the toxin). Here, we show that the N terminus of Phd is required for repressor but not antitoxin activity. Conversely, the C terminus is required for antitoxin but not repressor activity. Only a quarter of the protein, the resolution limit of this analysis, was required for both activities. We suggest that the plasmid addiction operon is a composite of two evolutionarily separable modules, an operator-repressor module and an antitoxin-toxin module. Consideration of similar antitoxin proteins and their surroundings indicates that modular exchange may contribute to antitoxin and operon diversity.


2006 ◽  
Vol 74 (10) ◽  
pp. 5595-5601 ◽  
Author(s):  
Cynthia L. Sears ◽  
Simy L. Buckwold ◽  
Jai W. Shin ◽  
Augusto A. Franco

ABSTRACT To evaluate the role of the C-terminal region in Bacteroides fragilis toxin (BFT) activity, processing, and secretion, sequential C-terminal truncation and point mutations were created by site-directed mutagenesis. Determination of BFT activity on HT29/C1 cells, cleavage of E-cadherin, and the capacity to induce interleukin-8 secretion by wild-type BFT and C-terminal deletion mutants showed that deletion of only 2 amino acid residues at the C terminus significantly reduced BFT biological activity and deletion of eight or more amino acid residues obliterated BFT biologic activity. Western blot and reverse transcription-PCR analyses indicated that BFT mutants lacking seven or fewer amino acid residues in the C-terminal region are processed and expressed similar to wild-type BFT. However, BFT mutants lacking eight or more amino acids at the C terminus are expressed similar to wild-type BFT but are unstable. We concluded that the C terminus of BFT is not tolerant of modest amino acid deletions, suggesting that it is biologically important for BFT activity.


1988 ◽  
Vol 251 (3) ◽  
pp. 691-699 ◽  
Author(s):  
R W Olafson ◽  
W D McCubbin ◽  
C M Kay

Biochemical and physiological studies of Synechococcus cyanobacteria have indicated the presence of a low-Mr heavy-metal-binding protein with marked similarity to eukaryotic metallothioneins (MTs). We report here the characterization of a Synechococcus prokaryotic MT isolated by gel-permeation and reverse-phase chromatography. The large number of variants of this molecule found during chromatographic separation could not be attributed to the presence of major isoproteins as assessed by amino acid analysis and amino acid sequencing of isoforms. Two of the latter were shown to have identical primary structures that differed substantially from the well-described eukaryotic MTs. In addition to six long-chain aliphatic residues, two aromatic residues were found adjacent to one another near the centre of the molecule, making this the most hydrophobic MT to be described. Other unusual features included a pair of histidine residues located in repeating Gly-His-Thr-Gly sequences near the C-terminus and a complete lack of association of hydroxylated residues with cysteine residues, as is commonly found in eukaryotes. Similarly, aside from a single lysine residue, no basic amino acid residues were found adjacent to cysteine residues in the sequence. Most importantly, sequence alignment analyses with mammalian, invertebrate and fungal MT sequences showed no statistically significant homology aside from the presence of Cys-Xaa-Cys structures common to all MTs. On the other hand, like other MTs, the prokaryotic molecule appears to be free of alpha-helical structure but has a considerable amount of beta-structure, as predicted by both c.d. measurements and the Chou & Fasman empirical relations. Considered together, these data suggested that some similarity between the metal-thiolate clusters of the prokaryote and eukaryote MTs may exist.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhongying Wang ◽  
Qixuan Wang ◽  
Hao Wu ◽  
Zhiwu Huang

Abstract Background Prestin (SLC26A5) is responsible for acute sensitivity and frequency selectivity in the vertebrate auditory system. Limited knowledge of prestin is from experiments using site-directed mutagenesis or domain-swapping techniques after the amino acid residues were identified by comparing the sequence of prestin to those of its paralogs and orthologs. Frog prestin is the only representative in amphibian lineage and the studies of it were quite rare with only one species identified. Results Here we report a new coding sequence of SLC26A5 for a frog species, Rana catesbeiana (the American bullfrog). In our study, the SLC26A5 gene of Rana has been mapped, sequenced and cloned successively using RNA-Seq. We measured the nonlinear capacitance (NLC) of prestin both in the hair cells of Rana’s inner ear and HEK293T cells transfected with this new coding gene. HEK293T cells expressing Rana prestin showed electrophysiological features similar to that of hair cells from its inner ear. Comparative studies of zebrafish, chick, Rana and an ancient frog species showed that chick and zebrafish prestin lacked NLC. Ancient frog’s prestin was functionally different from Rana. Conclusions We mapped and sequenced the SLC26A5 of the Rana catesbeiana from its inner ear cDNA using RNA-Seq. The Rana SLC26A5 cDNA was 2292 bp long, encoding a polypeptide of 763 amino acid residues, with 40% identity to mammals. This new coding gene could encode a functionally active protein conferring NLC to both frog HCs and the mammalian cell line. While comparing to its orthologs, the amphibian prestin has been evolutionarily changing its function and becomes more advanced than avian and teleost prestin.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 715
Author(s):  
Tamara Tomanić ◽  
Claire Martin ◽  
Holly Stefen ◽  
Esmeralda Parić ◽  
Peter Gunning ◽  
...  

Tropomyosins (Tpms) have been described as master regulators of actin, with Tpm3 products shown to be involved in early developmental processes, and the Tpm3 isoform Tpm3.1 controlling changes in the size of neuronal growth cones and neurite growth. Here, we used primary mouse hippocampal neurons of C57/Bl6 wild type and Bl6Tpm3flox transgenic mice to carry out morphometric analyses in response to the absence of Tpm3 products, as well as to investigate the effect of C-terminal truncation on the ability of Tpm3.1 to modulate neuronal morphogenesis. We found that the knock-out of Tpm3 leads to decreased neurite length and complexity, and that the deletion of two amino acid residues at the C-terminus of Tpm3.1 leads to more detrimental changes in neurite morphology than the deletion of six amino acid residues. We also found that Tpm3.1 that lacks the 6 C-terminal amino acid residues does not associate with stress fibres, does not segregate to the tips of neurites, and does not impact the amount of the filamentous actin pool at the axonal growth cones, as opposed to Tpm3.1, which lacks the two C-terminal amino acid residues. Our study provides further insight into the role of both Tpm3 products and the C-terminus of Tpm3.1, and it forms the basis for future studies that aim to identify the molecular mechanisms underlying Tpm3.1 targeting to different subcellular compartments.


2004 ◽  
Vol 186 (13) ◽  
pp. 4402-4406 ◽  
Author(s):  
Volkmar Braun ◽  
Christina Herrmann

ABSTRACT Replacement of glutamate 176, the only charged amino acid in the third transmembrane helix of ExbB, with alanine (E176A) abolished ExbB activity in all determined ExbB-dependent functions of Escherichia coli. Combination of the mutations T148A in the second transmembrane helix and T181A in the third transmembrane helix, proposed to form part of a proton pathway through ExbB, also resulted in inactive ExbB. E176 and T148 are strictly conserved in ExbB and TolQ proteins, and T181 is almost strictly conserved in ExbB, TolQ, and MotA.


2004 ◽  
Vol 186 (15) ◽  
pp. 4885-4893 ◽  
Author(s):  
Takane Katayama ◽  
Akiko Sakuma ◽  
Takatoshi Kimura ◽  
Yutaka Makimura ◽  
Jun Hiratake ◽  
...  

ABSTRACT A genomic library of Bifidobacterium bifidum constructed in Escherichia coli was screened for the ability to hydrolyze the α-(1→2) linkage of 2′-fucosyllactose, and a gene encoding 1,2-α-l-fucosidase (AfcA) was isolated. The afcA gene was found to comprise 1,959 amino acid residues with a predicted molecular mass of 205 kDa and containing a signal peptide and a membrane anchor at the N and C termini, respectively. A domain responsible for fucosidase activity (the Fuc domain; amino acid residues 577 to 1474) was localized by deletion analysis and then purified as a hexahistidine-tagged protein. The recombinant Fuc domain specifically hydrolyzed the terminal α-(1→2)-fucosidic linkages of various oligosaccharides and a sugar chain of a glycoprotein. The stereochemical course of the hydrolysis of 2′-fucosyllactose was determined to be inversion by using 1H nuclear magnetic resonance. The primary structure of the Fuc domain exhibited no similarity to those of any glycoside hydrolases (GHs) but showed high similarity to those of several hypothetical proteins in a database. Thus, it was revealed that the AfcA protein constitutes a novel inverting GH family (GH family 95).


Sign in / Sign up

Export Citation Format

Share Document