scholarly journals Transcriptional Regulation of sitABCD of Salmonella enterica Serovar Typhimurium by MntR and Fur

2005 ◽  
Vol 187 (3) ◽  
pp. 912-922 ◽  
Author(s):  
Jack S. Ikeda ◽  
Anuradha Janakiraman ◽  
David G. Kehres ◽  
Michael E. Maguire ◽  
James M. Slauch

ABSTRACT Salmonella enterica serovar Typhimurium has two manganese transport systems, MntH and SitABCD. MntH is a bacterial homolog of the eukaryotic natural resistance-associated macrophage protein 1 (Nramp1), and SitABCD is an ABC-type transporter. Previously we showed that mntH is negatively controlled at the transcriptional level by the trans-acting regulatory factors, MntR and Fur. In this study, we examined the transcriptional regulation of sitABCD and compared it to the transcriptional regulation of mntH by constructing lacZ fusions to the promoter regions with and without mutations in putative MntR and/or Fur binding sites. The presence of Mn caused transcriptional repression of the sitABCD and mntH promoters primarily via MntR, but Fur was also capable of some repression in response to Mn. Likewise, Fe in the medium repressed transcription of both sit and mntH primarily via Fur, although MntR was also involved in this response. Transcriptional control by MntR and Fur was disrupted by site-specific mutations in the putative MntR and Fur binding sites, respectively. Transcription of the sit operon was also affected by the oxygen level and growth phase, but the increased expression observed under high oxygen conditions and higher cell densities is consistent with decreased availability of metals required for repression by the metalloregulatory proteins.

2002 ◽  
Vol 184 (12) ◽  
pp. 3159-3166 ◽  
Author(s):  
David G. Kehres ◽  
Anuradha Janakiraman ◽  
James M. Slauch ◽  
Michael E. Maguire

ABSTRACT MntH, a bacterial homolog of the mammalian natural resistance-associated macrophage protein 1 (Nramp1), is a primary Mn2+ transporter of Salmonella enterica serovar Typhimurium and Escherichia coli. S. enterica serovar Typhimurium MntH expression is important for full virulence; however, strains carrying an mntH deletion are only partially attenuated and display no obvious signs of Mn2+ deficiency. We noted that promoter sequences for mntH and for the putative Fe2+ transporter sitABCD appeared to have the same regulatory element responsive to Mn2+ and so hypothesized that sitABCD could transport Mn2+ with high affinity. We have now characterized transport by SitABCD in S. enterica serovar Typhimurium using 54Mn2+ and 55Fe2+ and compared its properties to those of MntH. SitABCD mediates the influx of Mn2+ with an apparent affinity (Ka ) identical to that of MntH, 0.1 μM. It also transports Fe2+ but with a Ka 30 to 100 times lower, 3 to 10 μM. Inhibition of 54Mn2+ transport by Fe2+ and of 55Fe2+ transport by Mn2+ gave inhibition constants comparable to each cation's Ka for influx. Since micromolar concentrations of free Fe2+ are improbable in a biological system, we conclude that SitABCD functions physiologically as a Mn2+ transporter. The cation inhibition profiles of SitABCD and MntH are surprisingly similar for two structurally and energetically unrelated transporters, with a Cd2+ Ki of ≈1 μM and a Co2+ Ki of ≈20 μM and with Ni2+, Cu2+, and Fe3+ inhibiting both transporters only at concentrations of >0.1 mM. The one difference is that Zn2+ exhibits potent inhibition of SitABCD (Ki = 1 to 3 μM) but inhibits MntH weakly (Ki > 50 μM). We have previously shown that MntH transports Mn2+ most effectively under acidic conditions. In sharp contrast, SitABCD has almost no transport capacity at acid pHs and optimally transports Mn2+ at slightly alkaline pHs. Overall, coupled with evidence that each transporter is multiply but distinctly regulated at the transcriptional level, the distinct transport properties of MntH versus SitABCD suggest that each transporter may be specialized for Mn2+ uptake in different physiological environments.


2004 ◽  
Vol 186 (5) ◽  
pp. 1287-1296 ◽  
Author(s):  
Maria Paiva Raposo ◽  
José Manuel Inácio ◽  
Luís Jaime Mota ◽  
Isabel de Sá-Nogueira

ABSTRACT Bacillus subtilis produces hemicellulases capable of releasing arabinosyl oligomers and arabinose from plant cell walls. In this work, we characterize the transcriptional regulation of three genes encoding arabinan-degrading enzymes that are clustered with genes encoding enzymes that further catabolize arabinose. The abfA gene comprised in the metabolic operon araABDLMNPQ-abfA and the xsa gene located 23 kb downstream most probably encode α-l-arabinofuranosidases (EC 3.2.1.55). Here, we show that the abnA gene, positioned immediately upstream from the metabolic operon, encodes an endo-α-1,5-arabinanase (EC 3.2.1.99). Furthermore, by in vivo RNA studies, we inferred that abnA and xsa are monocistronic and are transcribed from σA-like promoters. Transcriptional fusion analysis revealed that the expression of the three arabinases is induced by arabinose and arabinan and is repressed by glucose. The levels of induction by arabinose and arabinan are higher during early postexponential growth, suggesting a temporal regulation. Moreover, the induction mechanism of these genes is mediated through negative control by the key regulator of arabinose metabolism, AraR. Thus, we analyzed AraR-DNA interactions by in vitro quantitative DNase I footprinting and in vivo analysis of single-base-pair substitutions within the promoter regions of xsa and abnA. The results indicate that transcriptional repression of the abfA and xsa genes is achieved by a tightly controlled mechanism but that the regulation of abnA is more flexible. We suggest that the expression of genes encoding extracellular degrading enzymes of arabinose-containing polysaccharides, transport systems, and intracellular enzymes involved in further catabolism is regulated by a coordinate mechanism triggered by arabinose via AraR.


2015 ◽  
Vol 197 (14) ◽  
pp. 2383-2391 ◽  
Author(s):  
Semen A. Leyn ◽  
Irina A. Rodionova ◽  
Xiaoqing Li ◽  
Dmitry A. Rodionov

ABSTRACTAutotrophic microorganisms are able to utilize carbon dioxide as their only carbon source, or, alternatively, many of them can grow heterotrophically on organics. Different variants of autotrophic pathways have been identified in various lineages of the phylumCrenarchaeota. Aerobic members of the orderSulfolobalesutilize the hydroxypropionate-hydroxybutyrate cycle (HHC) to fix inorganic carbon, whereas anaerobicThermoprotealesuse the dicarboxylate-hydroxybutyrate cycle (DHC). Knowledge of transcriptional regulation of autotrophic pathways inArchaeais limited. We applied a comparative genomics approach to predict novel autotrophic regulons in theCrenarchaeota. We report identification of two novel DNA motifs associated with the autotrophic pathway genes in theSulfolobales(HHC box) andThermoproteales(DHC box). Based on genome context evidence, the HHC box regulon was attributed to a novel transcription factor from the TrmB family named HhcR. Orthologs of HhcR are present in allSulfolobalesgenomes but were not found in other lineages. A predicted HHC box regulatory motif was confirmed byin vitrobinding assays with the recombinant HhcR protein fromMetallosphaera yellowstonensis. For the DHC box regulon, we assigned a different potential regulator, named DhcR, which is restricted to the orderThermoproteales. DhcR inThermoproteus neutrophilus(Tneu_0751) was previously identified as a DNA-binding protein with high affinity for the promoter regions of two autotrophic operons. The global HhcR and DhcR regulons reconstructed by comparative genomics were reconciled with available omics data inMetallosphaeraandThermoproteusspp. The identified regulons constitute two novel mechanisms for transcriptional control of autotrophic pathways in theCrenarchaeota.IMPORTANCELittle is known about transcriptional regulation of carbon dioxide fixation pathways inArchaea. We previously applied the comparative genomics approach for reconstruction of DtxR family regulons in diverse lineages ofArchaea. Here, we utilize similar computational approaches to identify novel regulatory motifs for genes that are autotrophically induced in microorganisms from two lineages ofCrenarchaeotaand to reconstruct the respective regulons. The predicted novel regulons in archaeal genomes control the majority of autotrophic pathway genes and also other carbon and energy metabolism genes. The HhcR regulon was experimentally validated by DNA-binding assays inMetallosphaeraspp. Novel regulons described for the first time in this work provide a basis for understanding the mechanisms of transcriptional regulation of autotrophic pathways inArchaea.


2010 ◽  
Vol 78 (9) ◽  
pp. 3848-3860 ◽  
Author(s):  
Lien Dejager ◽  
Iris Pinheiro ◽  
Pieter Bogaert ◽  
Liesbeth Huys ◽  
Claude Libert

ABSTRACT Infection with Salmonella enterica serovar Typhimurium is a complex disease in which the host-bacterium interactions are strongly influenced by genetic factors of the host. We demonstrate that SPRET/Ei, an inbred mouse strain derived from Mus spretus, is resistant to S. Typhimurium infections. The kinetics of bacterial proliferation, as well as histological examinations of tissue sections, suggest that SPRET/Ei mice can control bacterial multiplication and spreading despite significant attenuation of the cytokine response. The resistance of SPRET/Ei mice to S. Typhimurium infection is associated with increased leukocyte counts in the circulation and enhanced neutrophil influx into the peritoneum during the course of infection. A critical role of neutrophils was confirmed by neutrophil depletion: neutropenic SPRET/Ei mice were sensitive to infection with S. Typhimurium and showed much higher bacterial loads. To identify genes that modulate the natural resistance of SPRET/Ei mice to S. Typhimurium infection, we performed a genome-wide study using an interspecific backcross between C3H/HeN and SPRET/Ei mice. The results of this analysis demonstrate that at least two loci, located on chromosomes 6 and 11, affect survival following lethal infection with S. Typhimurium. These two loci contain several interesting candidate genes which may have important implications for the search for genetic factors controlling Salmonella infections in humans and for our understanding of complex host-pathogen interactions in general.


2018 ◽  
Author(s):  
E. Shannon Torres ◽  
Roger B. Deal

ABSTRACTPlants adapt to changes in their environment by regulating transcription and chromatin organization. The histone H2A variant H2A.Z and the SWI2/SNF2 ATPase BRAHMA have overlapping roles in positively and negatively regulating environmentally responsive genes in Arabidopsis, but the extent of this overlap was uncharacterized. Both have been associated with various changes in nucleosome positioning and stability in different contexts, but their specific roles in transcriptional regulation and chromatin organization need further characterization. We show that H2A.Z and BRM act both cooperatively and antagonistically to contribute directly to transcriptional repression and activation of genes involved in development and response to environmental stimuli. We identified 8 classes of genes that show distinct relationships between H2A.Z and BRM and their roles in transcription. We found that H2A.Z contributes to a range of different nucleosome properties, while BRM stabilizes nucleosomes where it binds and destabilizes and/or repositions flanking nucleosomes. H2A.Z and BRM contribute to +1 nucleosome destabilization, especially where they coordinately regulate transcription. We also found that at genes regulated by both BRM and H2A.Z, both factors overlap with the binding sites of light-regulated transcription factors PIF4, PIF5, and FRS9, and that some of the FRS9 binding sites are dependent on H2A.Z and BRM for accessibility. Collectively, we comprehensively characterized the antagonistic and cooperative contributions of H2A.Z and BRM to transcriptional regulation, and illuminated their interrelated roles in chromatin organization. The variability observed in their individual functions implies that both BRM and H2A.Z have more context-specific roles within diverse chromatin environments than previously assumed.


2003 ◽  
Vol 185 (16) ◽  
pp. 4973-4982 ◽  
Author(s):  
Jaime Bjarnason ◽  
Carolyn M. Southward ◽  
Michael G. Surette

ABSTRACT The importance of iron to bacteria is shown by the presence of numerous iron-scavenging and transport systems and by many genes whose expression is tightly regulated by iron availability. We have taken a global approach to gene expression analysis of Salmonella enterica serovar Typhimurium in response to iron by combining efficient, high-throughput methods with sensitive, luminescent reporting of gene expression using a random promoter library. Real-time expression profiles of the library were generated under low- and high-iron conditions to identify iron-regulated promoters, including a number of previously identified genes. Our results indicate that approximately 7% of the genome may be regulated directly or indirectly by iron. Further analysis of these clones using a Fur titration assay revealed three separate classes of genes; two of these classes consist of Fur-regulated genes. A third class was Fur independent and included both negatively and positively iron-responsive genes. These may reflect new iron-dependent regulons. Iron-responsive genes included iron transporters, iron storage and mobility proteins, iron-containing proteins (redox proteins, oxidoreductases, and cytochromes), transcriptional regulators, and the energy transducer tonB. By identifying a wide variety of iron-responsive genes, we extend our understanding of the global effect of iron availability on gene expression in the bacterial cell.


2003 ◽  
Vol 185 (21) ◽  
pp. 6287-6294 ◽  
Author(s):  
Sergio Lejona ◽  
Andrés Aguirre ◽  
María Laura Cabeza ◽  
Eleonora García Véscovi ◽  
Fernando C. Soncini

ABSTRACT The PhoP/PhoQ two-component system controls the extracellular magnesium deprivation response in Salmonella enterica. In addition, several virulence-associated genes that are mainly required for intramacrophage survival during the infection process are under the control of its transcriptional regulation. Despite shared Mg2+ modulation of the expression of the PhoP-activated genes, no consensus sequence common to all of them could be detected in their promoter regions. We have investigated the transcriptional regulation and the interaction of the response regulator PhoP with the promoter regions of the PhoP-activated loci phoPQ, mgtA, slyB, pmrD, pcgL, phoN, pagC, and mgtCB. A direct repeat of the heptanucleotide sequence (G/T)GTTTA(A/T) was identified as the conserved motif recognized by PhoP to directly control the gene expression of the first five loci, among which the first four are ancestral to enterobacteria. On the other hand, no direct interaction of the response regulator with the promoter of phoN, pagC, or mgtCB was apparent by either in vitro or in vivo assays. These loci are Salmonella specific and were probably acquired by horizontal DNA transfer. Besides, sequence analysis of pag promoters revealed the presence of a conserved PhoP box in 6 out of the 12 genes analyzed. Our results strongly suggest that the expression of a set of Mg2+-controlled genes is driven by PhoP via unknown intermediate regulatory mechanisms that could also involve ancillary factors.


2003 ◽  
Vol 185 (20) ◽  
pp. 6042-6050 ◽  
Author(s):  
Mette Christensen ◽  
Tudor Borza ◽  
Gert Dandanell ◽  
Anne-Marie Gilles ◽  
Octavian Barzu ◽  
...  

ABSTRACT Salmonella enterica, in contrast to Escherichia coli K12, can use 2-deoxy-d-ribose as the sole carbon source. The genetic determinants for this capacity in S. enterica serovar Typhimurium include four genes, of which three, deoK, deoP, and deoX, constitute an operon. The fourth, deoQ, is transcribed in the opposite direction. The deoK gene encodes deoxyribokinase. In silico analyses indicated that deoP encodes a permease and deoQ encodes a regulatory protein of the deoR family. The deoX gene product showed no match to known proteins in the databases. Deletion analyses showed that both a functional deoP gene and a functional deoX gene were required for optimal utilization of deoxyribose. Using gene fusion technology, we observed that deoQ and the deoKPX operon were transcribed from divergent promoters located in the 324-bp intercistronic region between deoQ and deoK. The deoKPX promoter was 10-fold stronger than the deoQ promoter, and expression was negatively regulated by DeoQ as well as by DeoR, the repressor of the deoxynucleoside catabolism operon. Transcription of deoKPX but not of deoQ was regulated by catabolite repression. Primer extension analysis identified the transcriptional start points of both promoters and showed that induction by deoxyribose occurred at the level of transcription initiation. Gel retardation experiments with purified DeoQ illustrated that it binds independently to tandem operator sites within the deoQ and deoK promoter regions with Kd values of 54 and 2.4 nM, respectively.


2009 ◽  
Vol 55 (11) ◽  
pp. 1284-1293 ◽  
Author(s):  
Cristina S. Costa ◽  
Ramón A. Pizarro ◽  
Dora N. Antón

A transcriptional fusion (opgG1::MudJ) to the opgGH operon of Salmonella enterica serovar Typhimurium (S. Typhimurium) LT2, isolated by resistance to mecillinam, was used to study the influence of global regulators RpoS, ppGpp, and cAMP/cAMP-receptor protein (CRP) on expression of the opgGH operon and osmoregulated periplasmic glucan (OPG) content. Neither high growth medium osmolarity nor absence of ppGpp or CRP had important effects on opgG1::MudJ expression in exponential cultures. However, under the same conditions, OPG content was strongly decreased by high osmolarity or cAMP/CRP defectiveness, and reduced to a half by lack of ppGpp. In stationary cultures, high osmolarity as well as CRP loss caused significant descents in opgG1::MudJ expression that were compensated by inactivation of RpoS σ factor. No effect of RpoS inactivation on OPG content was observed. It is concluded that opgGH expression in S. Typhimurium is only slightly affected by high osmolarity, but is inversely modulated by RpoS level. On the other hand, osmolarity and the cAMP/CRP global regulatory system appear to control OPG content, either directly or indirectly, mainly at the post-transcriptional level.


Sign in / Sign up

Export Citation Format

Share Document