scholarly journals Serotype and Genotype (Multilocus Sequence Type) ofStreptococcus suisIsolates from the United States Serve as Predictors of Pathotype

2019 ◽  
Vol 57 (9) ◽  
Author(s):  
April A. Estrada ◽  
Marcelo Gottschalk ◽  
Stephanie Rossow ◽  
Aaron Rendahl ◽  
Connie Gebhart ◽  
...  

ABSTRACTStreptococcus suisis a significant cause of mortality in piglets and growing pigs worldwide. The species contains pathogenic and commensal strains, with pathogenic strains causing meningitis, arthritis, endocarditis, polyserositis, and septicemia. Serotyping and multilocus sequence typing (MLST) are primary methods to differentiate strains, but the information is limited for strains found in the United States. The objective of this study was to characterize the diversity of 208S. suisisolates collected between 2014 and 2017 across North America (mainly the United States) by serotyping and MLST and to investigate associations between subtype and pathotype classifications (pathogenic, possibly opportunistic, and commensal), based on clinical information and site of isolation. Twenty serotypes were identified, and the predominant serotypes were 1/2 and 7. Fifty-eight sequence types (STs) were identified, and the predominant ST was ST28. Associations among serotypes, STs, and pathotypes were investigated using odds ratio and clustering analyses. Evaluation of serotype and ST with pathotype identified a majority of isolates of serotypes 1, 1/2, 2, 7, 14, and 23 and ST1, ST13, ST25, ST28, ST29, ST94, ST108, ST117, ST225, ST373, ST961, and ST977 as associated with the pathogenic pathotype. Serotypes 21 and 31, ST750, and ST821 were associated with the commensal pathotype, which is composed of isolates from farms with no known history ofS. suis-associated disease. Our study demonstrates the use of serotyping and MLST to differentiate pathogenic from commensal isolates and establish links between pathotype and subtype, thus increasing the knowledge aboutS. suisstrains circulating in the United States.

2014 ◽  
Vol 58 (11) ◽  
pp. 6953-6957 ◽  
Author(s):  
Fupin Hu ◽  
Jessica A. O'Hara ◽  
Jesabel I. Rivera ◽  
Yohei Doi

ABSTRACTWe characterized 30 community-associated extended-spectrum-β-lactamase-producingEscherichia coliisolates collected from five hospitals in the United States. Nineteen sequence types were identified. All sequence type 131 (ST131) isolates had thefimH30 allele. IncFII-FIA-FIB was the most common replicon type among theblaCTX-M-carrying plasmids, followed by IncFII-FIA and IncA/C. Restriction analysis of the IncFII-FIA-FIB and IncFII-FIA plasmids yielded related profiles for plasmids originating from different hospitals. The plasmids containingblaCTX-MorblaSHVwere stably maintained after serial passages.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Natalia Malachowa ◽  
Scott D. Kobayashi ◽  
Adeline R. Porter ◽  
Brett Freedman ◽  
Patrick W. Hanley ◽  
...  

ABSTRACT Klebsiella pneumoniae is a human gut communal organism and notorious opportunistic pathogen. The relative high burden of asymptomatic colonization by K. pneumoniae is often compounded by multidrug resistance—a potential problem for individuals with significant comorbidities or other risk factors for infection. A carbapenem-resistant K. pneumoniae strain classified as multilocus sequence type 258 (ST258) is widespread in the United States and is usually multidrug resistant. Thus, treatment of ST258 infections is often difficult. Inasmuch as new preventive and/or therapeutic measures are needed for treatment of such infections, we developed an ST258 pneumonia model in cynomolgus macaques and tested the ability of an ST258 capsule polysaccharide type 2 (CPS2) vaccine to moderate disease severity. Compared with sham-vaccinated animals, those vaccinated with ST258 CPS2 had significantly less disease as assessed by radiography 24 h after intrabronchial installation of 108 CFU of ST258. All macaques vaccinated with CPS2 ultimately developed ST258-specific antibodies that significantly enhanced serum bactericidal activity and killing of ST258 by macaque neutrophils ex vivo. Consistent with a protective immune response to CPS2, transcripts encoding inflammatory mediators were increased in infected lung tissues obtained from CPS-vaccinated animals compared with control, sham-vaccinated macaques. Taken together, our data provide support for the idea that vaccination with ST258 CPS can be used to prevent or moderate infections caused by ST258. As with studies performed decades earlier, we propose that this prime-boost vaccination approach can be extended to include multiple capsule types. IMPORTANCE Multidrug-resistant bacteria continue to be a major problem worldwide, especially among individuals with significant comorbidities and other risk factors for infection. K. pneumoniae is among the leading causes of health care-associated infections, and the organism is often resistant to multiple classes of antibiotics. A carbapenem-resistant K. pneumoniae strain known as multilocus sequence type 258 (ST258) is the predominant carbapenem-resistant Enterobacteriaceae in the health care setting in the United States. Infections caused by ST258 are often difficult to treat and new prophylactic measures and therapeutic approaches are needed. To that end, we developed a lower respiratory tract infection model in cynomolgus macaques in which to test the ability of ST258 CPS to protect against severe ST258 infection.


2017 ◽  
Vol 83 (6) ◽  
Author(s):  
James R. Johnson ◽  
Stephen B. Porter ◽  
Brian Johnston ◽  
Paul Thuras ◽  
Sarah Clock ◽  
...  

ABSTRACT Chicken meat products are hypothesized to be vehicles for transmitting antimicrobial-resistant and extraintestinal pathogenic Escherichia coli (ExPEC) to consumers. To reassess this hypothesis in the current era of heightened concerns about antimicrobial use in food animals, we analyzed 175 chicken-source E. coli isolates from a 2013 Consumer Reports national survey. Isolates were screened by PCR for ExPEC-defining virulence genes. The 25 ExPEC isolates (12% of 175) and a 2:1 randomly selected set of 50 non-ExPEC isolates were assessed for their phylogenetic/clonal backgrounds and virulence genotypes for comparison with their resistance profiles and the claims on the retail packaging label (“organic,” “no antibiotics,” and “natural”). Compared with the findings for non-ExPEC isolates, the group of ExPEC isolates had a higher prevalence of phylogroup B2 isolates (44% versus 4%; P < 0.001) and a lower prevalence of phylogroup A isolates (4% versus 30%; P = 0.001), a higher prevalence of multiple individual virulence genes, higher virulence scores (median, 11 [range, 4 to 16] versus 8 [range, 1 to 14]; P = 0.001), and higher resistance scores (median, 4 [range, 0 to 8] versus 3 [range, 0 to 10]; P < 0.001). All five isolates of sequence type 131 (ST131) were ExPEC (P = 0.003), were as extensively resistant as the other isolates tested, and had higher virulence scores than the other isolates tested (median, 12 [range, 11 to 13] versus 8 [range, 1 to 16]; P = 0.005). Organic labeling predicted lower resistance scores (median, 2 [range, 0 to 3] versus 4 [range, 0 to 10]; P = 0.008) but no difference in ExPEC status or virulence scores. These findings document a persisting reservoir of extensively antimicrobial-resistant ExPEC isolates, including isolates from ST131, in retail chicken products in the United States, suggesting a potential public health threat. IMPORTANCE We found that among Escherichia coli isolates from retail chicken meat products purchased across the United States in 2013 (many of these isolates being extensively antibiotic resistant), a minority had genetic profiles suggesting an ability to cause extraintestinal infections in humans, such as urinary tract infection, implying a risk of foodborne disease. Although isolates from products labeled “organic” were less extensively antibiotic resistant than other isolates, they did not appear to be less virulent. These findings suggest that retail chicken products in the United States, even if they are labeled “organic,” pose a potential health threat to consumers because they are contaminated with extensively antibiotic-resistant and, presumably, virulent E. coli isolates.


2017 ◽  
Vol 5 (44) ◽  
Author(s):  
Samantha J. Hau ◽  
Darrell O. Bayles ◽  
David P. Alt ◽  
Timothy S. Frana ◽  
Tracy L. Nicholson

ABSTRACT Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) is a bacterium carried by or obtained from swine and other livestock. The initial and predominant swine-associated LA-MRSA sequence type (ST) identified is ST398. Here, we present 14 draft genome sequences from LA-MRSA ST398 isolates found in the United States.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
James R. Johnson ◽  
Stephen Porter ◽  
Paul Thuras ◽  
Mariana Castanheira

ABSTRACT The H30 subclone of Escherichia coli sequence type 131 (ST131-H30) has become the leading antimicrobial resistance E. coli lineage in the United States and often exhibits resistance to one or both of the two key antimicrobial classes for treating Gram-negative infections, extended-spectrum cephalosporins (ESCs) and fluoroquinolones (FQs). However, the timing of and reasons for its recent emergence are inadequately defined. Accordingly, from E. coli clinical isolates collected systematically across the United States by the SENTRY Antimicrobial Surveillance Program in 2000, 2003, 2006, and 2009, 234 isolates were selected randomly, stratified by year, within three resistance categories: (i) ESC-reduced susceptibility, regardless of FQ phenotype (ESC-RS); (ii) FQ resistance, ESC susceptible (FQ-R); and (iii) FQ susceptible, ESC susceptible (FQ-S). Susceptibility profiles, phylogroup, ST, ST131 subclone, and virulence genotypes were determined, and temporal trends and between-variable associations were assessed statistically. From 2000 to 2006, concurrently with the emergence of ESC-RS and FQ-R strains, the prevalence of (virulence-associated) phylogroup B2 among such strains also rose dramatically, due entirely to rapid emergence of ST131, especially H30. By 2009, H30 was the dominant E. coli lineage overall (22%), accounting for a median of 43% of all single-agent and multidrug resistance (68% for ciprofloxacin). H30's emergence increased the net virulence gene content of resistant (especially FQ-R) isolates, giving stable overall virulence gene scores despite an approximately 4-fold expansion of the historically less virulent resistant population. These findings define more precisely the timing and tempo of H30's emergence in the United States, identify possible reasons for it, and suggest potential consequences, including more frequent and/or aggressive antimicrobial-resistant infections.


2016 ◽  
Vol 60 (7) ◽  
pp. 4073-4081 ◽  
Author(s):  
Kalyan D. Chavda ◽  
Liang Chen ◽  
Michael R. Jacobs ◽  
Robert A. Bonomo ◽  
Barry N. Kreiswirth

ABSTRACTThe emergence and spread ofKlebsiella pneumoniaecarbapenemase (KPC) amongEnterobacteriaceaepresents a major public health threat to the world. Although not as common as inK. pneumoniae, KPC is also found inEscherichia colistrains. Here, we genetically characterized 9 carbapenem-resistantE. colistrains isolated from six hospitals in the United States and completely sequenced theirblaKPC-harboring plasmids. The nine strains were isolated from different geographical locations and belonged to 8 differentE. colisequence types. SevenblaKPC-harboring plasmids belonged to four different known incompatibility groups (IncN, -FIA, -FIIK2, and -FIIK1) and ranged in size from ∼16 kb to ∼241 kb. In this analysis, we also identified two plasmids that have novel replicons: (i) pBK28610, which is similar to p34978-3 with an insertion of Tn4401b, and (ii) pBK31611, which does not have an apparent homologue in the GenBank database. Moreover, we report the emergence of a pKP048-like plasmid, pBK34397, inE. coliin the United States. Meanwhile, we also found examples of interspecies spread ofblaKPCplasmids, as pBK34592 is identical to pBK30683, isolated fromK. pneumoniae. In addition, we discovered examples of acquisition (pBK32602 acquired an ∼46-kb fragment including a novel replication gene, along with Tn4401band other resistance genes) and/or loss (pKpQIL-Ec has a 14.5-kb deletion compared to pKpQIL-10 and pBK33689) of DNA, demonstrating the plasticity of these plasmids and their rapid evolution in the clinic. Overall, our study shows that the spread ofblaKPC-producingE. coliis largely due to horizontal transfer ofblaKPC-harboring plasmids and related mobile elements into diverse genetic backgrounds.


2017 ◽  
Vol 5 (44) ◽  
Author(s):  
Samantha J. Hau ◽  
Darrell O. Bayles ◽  
David P. Alt ◽  
Timothy S. Frana ◽  
Tracy L. Nicholson

ABSTRACT Methicillin-resistant Staphylococcus aureus colonizes humans and other animals such as swine. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) sequence type 5 (ST5) isolates are a public concern due to their pathogenicity and ability to acquire mobile genetic elements. This report presents draft genome sequences for 63 LA-MRSA ST5 isolates in the United States.


2015 ◽  
Vol 53 (7) ◽  
pp. 2385-2388 ◽  
Author(s):  
Hope A. Beilfuss ◽  
David Quig ◽  
Mary Ann Block ◽  
Paul C. Schreckenberger

Laribacter hongkongensisis a potential emerging pathogen associated with community-acquired gastroenteritis and traveler's diarrhea. We report the isolation ofL. hongkongensisfrom the stool of a patient who had no history of travel outside the United States. The organism was identified by phenotypic tests, mass spectrometry, and gene sequencing.


2017 ◽  
Vol 5 (32) ◽  
Author(s):  
Samantha J. Hau ◽  
Darrell O. Bayles ◽  
David P. Alt ◽  
Timothy S. Frana ◽  
Tracy L. Nicholson

ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) colonizes and causes disease in many animal species. Livestock-associated MRSA (LA-MRSA) isolates are represented by isolates of the sequence type 398 (ST398). These isolates are considered to be livestock adapted. This report provides the complete genome sequence of one swine-associated LA-MRSA ST398 isolate from the United States.


2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Maria Karlsson ◽  
Richard A. Stanton ◽  
Uzma Ansari ◽  
Gillian McAllister ◽  
Monica Y. Chan ◽  
...  

ABSTRACT We report on a carbapenemase-producing hypervirulent Klebsiella pneumoniae (CP-hvKP) isolate collected from a U.S. patient at an outpatient clinic. The isolate was identified as K. pneumoniae serotype K1 sequence type 23 and included both a hypervirulence (with rmpA, rmpA2 iroBCDN, peg-344, and iucABCD-iutA genes) and a carbapenemase-encoding (blaKPC-2) plasmid. The emergence of CP-hvKP underscores the importance of clinical awareness of this pathotype and the need for continued monitoring of CP-hvKP in the United States.


Sign in / Sign up

Export Citation Format

Share Document