scholarly journals Determination of Trimethoprim-Sulfamethoxazole Resistance in Streptococcus pneumoniae by Using the E Test with Mueller-Hinton Agar Supplemented with Sheep or Horse Blood May Be Unreliable

1999 ◽  
Vol 37 (1) ◽  
pp. 215-217 ◽  
Author(s):  
M. Lovgren ◽  
L. Dell’Acqua ◽  
R. Palacio ◽  
G. Echániz-Aviles ◽  
A. Soto-Noguerón ◽  
...  

An international, multicenter study compared trimethoprim-sulfamethoxazole MICs for 743 Streptococcus pneumoniae isolates (107 to 244 isolates per country) by E test, using Mueller-Hinton agar supplemented with 5% defibrinated horse blood or 5% defibrinated sheep blood, with MICs determined by the National Committee for Clinical Laboratory Standards broth microdilution reference method. Agreement within 1 log2dilution and minor error rates were 69.3 and 15.5%, respectively, on sheep blood-supplemented agar and 76.9 and 13.6%, respectively, with horse blood as the supplement. Significant interlaboratory variability was observed. E test may not be a reliable method for determining the resistance of pneumococci to trimethoprim-sulfamethoxazole.

1998 ◽  
Vol 36 (9) ◽  
pp. 2586-2589 ◽  
Author(s):  
M. A. Pfaller ◽  
S. A. Messer ◽  
Å. Karlsson ◽  
A. Bolmström

The performance of the Etest for fluconazole susceptibility testing of 402 yeast isolates was assessed against the National Committee for Clinical Laboratory Standards (NCCLS) microdilution broth method. The NCCLS method employed RPMI 1640 broth medium, and MICs were read after incubation for 48 h at 35°C. Etest MICs were determined with RPMI agar containing 2% glucose (RPG), Casitone agar (CAS), and Mueller-Hinton agar (MHA) and were read after incubation for 48 h at 35°C. The yeast isolates included Candida albicans(n = 161), Candida glabrata(n = 41), Candida tropicalis(n = 35), Candida parapsilosis(n = 29), Candida krusei(n = 32), Candida lusitaniae(n = 31), Candida species (n = 19), Cryptococcus neoformans(n = 40), and miscellaneous yeast species (n = 14). The Etest results correlated well with reference MICs. Overall agreement was 94% with RPG, 97% with CAS, and 53% with MHA. When RPG was used, agreement ranged from 89% forCandida spp. to 100% for C. krusei. When CAS was utilized, agreement ranged from 93% for Cryptococcus neoformans to 100% for C. tropicalis, C. parapsilosis, C. lusitaniae, Candidaspp., and miscellaneous yeast species. With MHA, agreement ranged from 17% for C. parapsilosis to 90% for C. krusei. Both RPG and CAS supported growth of all yeast species, whereas growth on MHA was comparatively weaker. Etest results were somewhat easier to read on CAS. The Etest method using either RPG or CAS, but not MHA, appears to be a viable alternative to the NCCLS reference method for determining fluconazole susceptibilities of yeasts.


2000 ◽  
Vol 38 (2) ◽  
pp. 752-754 ◽  
Author(s):  
Zafar Hussain ◽  
Luba Stoakes ◽  
Viki Massey ◽  
Deb Diagre ◽  
Viivi Fitzgerald ◽  
...  

The National Committee for Clinical Laboratory Standards has recently changed the oxacillin breakpoint from ≥4 mg/liter to ≥0.5 mg/liter to detect methicillin-resistant coagulase-negative staphylococci (CoNS) because the previous breakpoint lacked sensitivity. To determine the correlation between the new oxacillin breakpoint and the presence of themecA gene, 493 CoNS of 11 species were tested. The presence of the mecA gene was determined by PCR, and oxacillin susceptibility was determined by the agar dilution method with Mueller-Hinton agar containing 2% NaCl and oxacillin (0.125 to 4.0 mg/liter). The new breakpoint correctly classified all CoNS strains with mecA as methicillin resistant and strains ofStaphylococcus epidermidis, S. haemolyticus, and S. hominiswithout mecA as methicillin susceptible. The breakpoint of ≥0.5 mg/liter was not specific for S. cohnii, S. lugdunensis, S. saprophyticus, S. warneri, and S. xylosus, in that it categorized 70 of 74 strains of these species withoutmecA (94.6%) as methicillin resistant. The results of this study indicate that the new oxacillin breakpoint accurately identifies strains of CoNS with mecAbut is not specific for strains of certain species of CoNS withoutmecA.


1998 ◽  
Vol 36 (3) ◽  
pp. 833-834 ◽  
Author(s):  
M. A. Gardam ◽  
M. A. Miller

To determine the optimal media for optochin susceptibility testing of Streptococcus pneumoniae, we measured inhibition zones for 72 S. pneumoniae and 22 Streptococcus viridans isolates on three blood-containing media. Because 15.3, 0, and 22.2% of S. pneumoniae organisms were misidentified on Columbia agar, Trypticase soy agar (TSA), and Mueller-Hinton agar, respectively, each containing sheep blood, we recommend that TSA-sheep blood agar be used.


2002 ◽  
Vol 18 (5) ◽  
pp. 241-247
Author(s):  
Eric G Sahloff ◽  
Benjamin P Smith ◽  
Steven J Martin

Objectives and Design: The use of fluoroquinolones has increased against antibiotic-resistant pathogens such as Streptococcus pneumoniae and Pseudomonas aeruginosa. The E-test (AB Biodisk, Solna, Sweden) is now commonly used for susceptibility testing of fluoroquinolones against these organisms. The purpose of the present study was to evaluate the accuracy and correlation of minimum inhibitory concentrations (MICs) determined by E-testing with a National Committee for Clinical Laboratory Standards reference standard, agar-dilution MIC testing. E-test and agar dilution MICs were compared for ciprofloxacin, levofloxacin, gatifloxacin, and moxifloxacin against clinical isolates of S. pneumoniae (n = 53) and P. aeruginosa (n = 62). Main Outcome Measures: MICs were determined by use of agar dilution and E-test methods. Essential agreement was defined as MICs from both methods within ± 1 log2 dilution. Categorical agreement compared MIC interpretations: susceptible, intermediate, or resistant. Categorical disagreement between methods was reported as very major, major, or minor errors. Results: E-tests produced lower MICs than the reference method for ciprofloxacin, gatifloxacin, and moxifloxacin versus P. aeruginosa. For S. pneumoniae, E-test MICs tended to be higher for all fluoroquinolones. The best correlation between testing methods was seen with levofloxacin. Essential agreement occurred more frequently with P. aeruginosa in the lower range of MICs and with S. pneumoniae in the higher range of MICs. Categorical agreement was greater than 90% for the 460 comparisons. Two very major errors (false-susceptible) occurred for gatifloxacin versus P. aeruginosa. Conclusions: For the determination of fluoroquinolone susceptibility against S. pneumoniae and P. aeruginosa, E-testing is a simple tool for clinical use, and few very major or major errors in susceptibility interpretation occur for either organism. For determining fluoroquinolone MICs, E-testing may overestimate drug activity against P. aeruginosa and underestimate drug activity versus S. pneumoniae compared with the agar dilution method. These differences could affect appropriate antimicrobial selection, leading to suboptimal outcomes.


2000 ◽  
Vol 38 (5) ◽  
pp. 1713-1716 ◽  
Author(s):  
M. Jasmine Mohammed ◽  
Fred C. Tenover

Antimicrobial resistance continues to increase worldwide among isolates of Streptococcus pneumoniae and other species of streptococci. Increasing rates of penicillin resistance, particularly in viridans group streptococci, and resistance to multiple classes of antimicrobial agents, including β-lactams, macrolides, and fluoroquinolones, in pneumococci have increased the importance of having accurate antimicrobial susceptibility testing results for guiding therapy. One commercial method of assessing resistance in streptococci is the PASCO Strep Plus panel. This broth microdilution-based method has recently been expanded to include a variety of newer antimicrobial agents. Therefore, we compared the results of the new PASCO Strep Plus panels for 26 antimicrobial agents against the results generated using the National Committee for Clinical Laboratory Standards (NCCLS) broth microdilution reference method for 75 pneumococci and 68 other streptococcal isolates. Only 4 (0.2%) very major errors (all with pneumococci and each with a different antimicrobial agent) were observed. There were 5 (0.3%) major errors observed with pneumococci (each with a different antimicrobial agent), but only 1 major error with nonpneumococcal streptococci. All of the very major and major errors resolved on retesting. Of the 65 (3.9%) and 17 (1.6%) minor errors observed with pneumococci and other streptococci, respectively, all were within 1 dilution of the broth microdilution reference MIC result. Thus, the PASCO Strep Plus panel has comparable accuracy to the NCCLS broth microdilution reference method.


Medicina ◽  
2007 ◽  
Vol 43 (1) ◽  
pp. 36 ◽  
Author(s):  
Greta Gailienė ◽  
Alvydas Pavilonis ◽  
Violeta Kareivienė

Pseudomonas aeruginosa is one of the most common nonfermenting aerobic gramnegative microorganisms identified in clinical specimens of hospitalized patients. The emergence of multidrug-resistant (MDR) Pseudomonas aeruginosa strains is a growing concern in hospitalacquired infections. Typing of strains is important for identifying the sources of infection as well as prevention of cross-infections and monitoring of the efficacy of antimicrobial therapy. The aim of this study was to evaluate the antimicrobial resistance and prevalence of Pseudomonas aeruginosa serogroups isolated at Kaunas University of Medicine Hospital, Lithuania. Material and methods. Minimum inhibitory concentrations of piperacillin, cefoperazone, ceftazidime, cefotaxime, cefepime, imipenem, meropenem, gentamicin, amikacin, tobramycin, and ciprofloxacin for 609 Pseudomonas aeruginosa strains isolated from various clinical specimens between November 2001 and November 2002 were determined by the microdilution method in Mueller–Hinton agar using interpretative guidelines of National Committee for Clinical Laboratory Standards. Serogroups of Pseudomonas aeruginosa strains were identified using serums of Seiken Co. Ltd (Tokyo, Japan), containing antibodies against antigens of Pseudomonas aeruginosa O-group. Results. Pseudomonas aeruginosa strains were the most sensitive to ceftazidime (78.9%), imipenem (73.6%), meropenem (70.9%) and the most resistant to gentamicin (54.1%) and ciprofloxacin (52.5%). Multidrug-resistant strains made up 9.85% of all Pseudomonas aeruginosa strains investigated. Multidrug-resistant Pseudomonas aeruginosa strains were 1.5–3.5 times more resistant to antibiotics compared to non-multidrug-resistant strains, except to amikacin: multidrug-resistant strains were more sensitive (81.7%) than non-multidrug-resistant Pseudomonas aeruginosa strains (61.0%). Pseudomonas aeruginosa serogroups O:E and O:B were the most common serogroups (34.7% and 29.0%, respectively) followed by serogroups O:I (11.4%) and O:A (10.1%). Pseudomonas aeruginosa serogroup O:E strains were the most prevalent among multidrug-resistant strains (48.3%). Conclusions. The results of our study show that serogroup O:E was the most prevalent serogroup of Pseudomonas aeruginosa in our hospital, and its resistance to antibiotics was the highest.


2011 ◽  
Vol 14 (3) ◽  
pp. 405-410 ◽  
Author(s):  
M. Bochniarz ◽  
W. Wawron

Antibiotic susceptibility of methicillin-resistant and methicillin-susceptible coagulase-negative staphylococci isolated from bovine mastitisThe aim of the present study was to evaluate the antibiotic susceptibility of methicillin-susceptible (MS) and methicillin-resistant (MR) coagulase-negative Staphylococcus (CNS) strains isolated from milk of cows with mastitis. The study was conducted on 100 CNS strains (20 MRCNS and 80 MSCNS) isolated from milk samples of 86 cows from the Lublin (Poland) region farms. Antibiotic susceptibility of microorganisms was evaluated using the disc-diffusion method on the Mueller-Hinton agar according to the guidelines of the National Committee for Clinical Laboratory Standards (NCCLS). The highest efficacy against MSCNS was demonstrated for cephalosporin antibiotics, i.e. cefacetril (91.3%), ceftiofur (67.5%), cefoperazone (66.3%) and cephalexin (60.0% of susceptible MSCNS strains). Moreover, a high percentage of vancomycin-susceptible strains was demonstrated (83. 8%). The activity of combination of amoxicillin with clavulanic acid and gentamicin was found weaker (63.8% and 61.3% of susceptible strains, respectively). About 50.0% of MSCNS were susceptible to erythromycin, enrofloxacine and amoxicillin. A large proportion of CNS was resistant to neomycin, penicillin, tetracycline, streptomycin, lincomycin and ampicillin (28.8%, 30.0%, 31.3%, 31.3%, 33.8% and 33.8% of susceptible strains, respectively). The highest percentage of MRCNS was susceptible to vancomycin (75.0%), erythromycin (65.0%) and streptomycin (50.0%). Their susceptibility to enrofloxacine (35.0%) as well as gentamicin and tetracycline (30.0%) was markedly lower. The lowest activity was found for lincomycin and neomycin (20.0% of susceptible MRCNS strains, each).


2000 ◽  
Vol 38 (8) ◽  
pp. 2814-2818 ◽  
Author(s):  
James H. Jorgensen ◽  
Arthur L. Barry ◽  
M. M. Traczewski ◽  
Daniel F. Sahm ◽  
M. Leticia McElmeel ◽  
...  

The VITEK 2 is a new automated instrument for rapid organism identification and susceptibility testing. It has the capability of performing rapid susceptibility testing of Streptococcus pneumoniae with specially configured cards that contain enriched growth medium and antimicrobial agents relevant for this organism. The present study compared the results of testing of a group of 53 challenge strains of pneumococci with known resistance properties and a collection of clinical isolates examined in two study phases with a total of 402 and 416 isolates, respectively, with a prototype of the VITEK 2. Testing was conducted in three geographically separate laboratories; the challenge collection was tested by all three laboratories, and the unique clinical isolates were tested separately by the individual laboratories. The VITEK 2 results of tests with 10 antimicrobial agents were compared to the results generated by the National Committee for Clinical Laboratory Standards reference broth microdilution MIC test method. Excellent interlaboratory agreement was observed with the challenge strains. The overall agreement within a single twofold dilution of MICs defined by the VITEK 2 and reference method with the clinical isolates was 96.3%, although there were a number of off-scale MICs that could not be compared. The best agreement with the clinical isolates was achieved with ofloxacin and chloramphenicol (100%), and the lowest level of agreement among those drugs with sufficient on-scale MICs occurred with trimethoprim-sulfamethoxazole (89.7%). Overall there were 1.3% very major, 6.6% minor, and no major interpretive category errors encountered with the clinical isolates, although >80% of the minor interpretive errors involved only a single log2 dilution difference. The mean time for generation of susceptibility results with the clinical isolates was 8.1 h. The VITEK 2 provided rapid, reliable susceptibility category determinations with both the challenge and clinical isolates examined in this study.


Author(s):  
Jasmin Kaur Jasuja ◽  
Stefan Zimmermann ◽  
Irene Burckhardt

AbstractOptimisation of microbiological diagnostics in primarily sterile body fluids is required. Our objective was to apply EUCAST’s RAST on primarily sterile body fluids in blood culture bottles with total lab automation (TLA) and to compare results to our reference method Vitek2 in order to report susceptibility results earlier. Positive blood culture bottles (BACTEC™ Aerobic/Anaerobic/PEDS) inoculated with primarily sterile body fluids were semi-automatically subcultured onto Columbia 5% SB agar, chocolate agar, MacConkey agar, Schaedler/KV agar and Mueller-Hinton agar. On latter, cefoxitin, ampicillin, vancomycin, piperacillin/tazobactam, meropenem and ciprofloxacin were added. After 6 h, subcultures and RAST were imaged and MALDI-TOF MS was performed. Zone sizes were digitally measured and interpreted following RAST breakpoints for blood cultures. MIC values were determined using Vitek2 panels. During a 1-year period, 197 Staphylococcus aureus, 91 Enterococcus spp., 38 Escherichia coli, 11 Klebsiella pneumoniae and 8 Pseudomonas aeruginosa were found. Categorical agreement between RAST and MIC was 96.5%. Comparison showed no very major errors, 2/7 (28.6%) and 1/7 (14.3%) of major errors for P. aeruginosa and meropenem and ciprofloxacin, 1/9 (11.1%) for K. pneumoniae and ciprofloxacin, 4/69 (7.0%) and 3/43 (5.8%) for Enterococcus spp. and vancomycin and ampicillin, respectively. Minor errors for P. aeruginosa and meropenem (1/8; 12.8%) and for E. coli and ciprofloxacin (2/29; 6.5%) were found. 30/550 RAST measurements were within area of technical uncertainty. RAST is applicable and performs well for primarily sterile body fluids in blood culture bottles, partially better than blood-based RAST. Official EUCAST evaluation is needed.


Sign in / Sign up

Export Citation Format

Share Document