scholarly journals Distribution of the Intermedilysin Gene among the Anginosus Group Streptococci and Correlation between Intermedilysin Production and Deep-Seated Infection with Streptococcus intermedius

2000 ◽  
Vol 38 (1) ◽  
pp. 220-226
Author(s):  
Hideaki Nagamune ◽  
Robert A. Whiley ◽  
Takatsugu Goto ◽  
Yasuko Inai ◽  
Takuya Maeda ◽  
...  

ABSTRACT The distribution of intermedilysin, a human-specific cytolysin, among the anginosus group streptococci and the correlation of toxin production and infection by Streptococcus intermedius were investigated. PCR and Southern hybridization specific for the intermedilysin gene revealed that the toxin gene exists only in S. intermedius and no homologue to the toxin gene is distributed in S. anginosus and S. constellatus . Thus, the intermedilysin gene is useful as a marker gene of S. intermedius . Moreover, a human-specific hemolysis assay and Western blotting with intermedilysin-specific antibodies clearly demonstrated that the intermedilysin production level in isolates from deep-seated infections, such as brain and liver abscesses, is higher (6.2- to 10.2-fold, respectively) than in strains from normal habitats, such as dental plaque, or from peripheral infection sites. However, other candidate virulence factors of S. intermedius , such as chondroitin sulfate depolymerase, hyaluronidase, and sialidase activities, did not show such a clear correlation between enzymatic activity and isolation sites or disease severity. From these results, intermedilysin is likely to be the pathogenic or triggering factor of significance in inducing deep-seated infections with S. intermedius .

Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 714
Author(s):  
Supapit Wongkuna ◽  
Tavan Janvilisri ◽  
Matthew Phanchana ◽  
Phurt Harnvoravongchai ◽  
Amornrat Aroonnual ◽  
...  

Clostridioides difficile has been recognized as a life-threatening pathogen that causes enteric diseases, including antibiotic-associated diarrhea and pseudomembranous colitis. The severity of C. difficile infection (CDI) correlates with toxin production and antibiotic resistance of C. difficile. In Thailand, the data addressing ribotypes, toxigenic, and antimicrobial susceptibility profiles of this pathogen are scarce and some of these data sets are limited. In this study, two groups of C. difficile isolates in Thailand, including 50 isolates collected from 2006 to 2009 (THA group) and 26 isolates collected from 2010 to 2012 (THB group), were compared for toxin genes and ribotyping profiles. The production of toxins A and B were determined on the basis of toxin gene profiles. In addition, minimum inhibitory concentration of eight antibiotics were examined for all 76 C. difficile isolates. The isolates of the THA group were categorized into 27 A−B+CDT− (54%) and 23 A-B-CDT- (46%), while the THB isolates were classified into five toxigenic profiles, including six A+B+CDT+ (23%), two A+B+CDT− (8%), five A−B+CDT+ (19%), seven A−B+CDT− (27%), and six A−B−CDT− (23%). By visually comparing them to the references, only five ribotypes were identified among THA isolates, while 15 ribotypes were identified within THB isolates. Ribotype 017 was the most common in both groups. Interestingly, 18 unknown ribotyping patterns were identified. Among eight tcdA-positive isolates, three isolates showed significantly greater levels of toxin A than the reference strain. The levels of toxin B in 3 of 47 tcdB-positive isolates were significantly higher than that of the reference strain. Based on the antimicrobial susceptibility test, metronidazole showed potent efficiency against most isolates in both groups. However, high MIC values of cefoxitin (MICs 256 μg/mL) and chloramphenicol (MICs ≥ 64 μg/mL) were observed with most of the isolates. The other five antibiotics exhibited diverse MIC values among two groups of isolates. This work provides evidence of temporal changes in both C. difficile strains and patterns of antimicrobial resistance in Thailand.


2021 ◽  
Vol 12 ◽  
Author(s):  
Duolong Zhu ◽  
Shaohui Wang ◽  
Xingmin Sun

Clostridioides difficile flagellin FliC is associated with toxin gene expression, bacterial colonization, and virulence, and is also involved in pleiotropic gene regulation during in vivo infection. However, how fliC expression is regulated in C. difficile remains unclear. In Bacillus subtilis, flagellin homeostasis and motility are coregulated by flagellar assembly factor (FliW), flagellin Hag (FliC homolog), and Carbon storage regulator A (CsrA), which is referred to as partner-switching mechanism “FliW-CsrA-Hag.” In this study, we characterized FliW and CsrA functions by deleting or overexpressing fliW, csrA, and fliW-csrA in C. difficile R20291. We showed that fliW deletion, csrA overexpression in R20291, and csrA complementation in R20291ΔWA (fliW-csrA codeletion mutant) dramatically decreased FliC production, but not fliC gene transcription. Suppression of fliC translation by csrA overexpression can be relieved mostly when fliW was coexpressed, and no significant difference in FliC production was detected when only fliW was complemented in R20291ΔWA. Further, loss of fliW led to increased biofilm formation, cell adhesion, toxin production, and pathogenicity in a mouse model of C. difficile infection (CDI), while fliW-csrA codeletion decreased toxin production and mortality in vivo. Our data suggest that CsrA negatively modulates fliC expression and FliW indirectly affects fliC expression through inhibition of CsrA post-transcriptional regulation. In light of “FliW-CsrA-Hag” switch coregulation mechanism reported in B. subtilis, our data also suggest that “FliW-CsrA-fliC/FliC” can regulate many facets of C. difficile R20291 pathogenicity. These findings further aid us in understanding the virulence regulation in C. difficile.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Adrianne N. Edwards ◽  
Brandon R. Anjuwon-Foster ◽  
Shonna M. McBride

ABSTRACTClostridioides difficileinfection (CDI) is a toxin-mediated diarrheal disease. Several factors have been identified that influence the production of the two majorC. difficiletoxins, TcdA and TcdB, but prior published evidence suggested that additional unknown factors were involved in toxin regulation. Previously, we identified aC. difficileregulator, RstA, that promotes sporulation and represses motility and toxin production. We observed that the predicted DNA-binding domain of RstA was required for RstA-dependent repression of toxin genes, motility genes, andrstAtranscription. In this study, we further investigated the regulation of toxin and motility gene expression by RstA. DNA pulldown assays confirmed that RstA directly binds therstApromoter via the predicted DNA-binding domain. Through mutational analysis of therstApromoter, we identified several nucleotides that are important for RstA-dependent transcriptional regulation. Further, we observed that RstA directly binds and regulates the promoters of the toxin genestcdAandtcdB, as well as the promoters for thesigDandtcdRgenes, which encode regulators of toxin gene expression. Complementation analyses with theClostridium perfringensRstA ortholog and a multispecies chimeric RstA protein revealed that theC. difficileC-terminal domain is required for RstA DNA-binding activity, suggesting that species-specific signaling controls RstA function. Our data demonstrate that RstA is a transcriptional repressor that autoregulates its own expression and directly inhibits transcription of the two toxin genes and two positive toxin regulators, thereby acting at multiple regulatory points to control toxin production.IMPORTANCEClostridioides difficileis an anaerobic, gastrointestinal pathogen of humans and other mammals.C. difficileproduces two major toxins, TcdA and TcdB, which cause the symptoms of the disease, and forms dormant endospores to survive the aerobic environment outside the host. A recently discovered regulatory factor, RstA, inhibits toxin production and positively influences spore formation. Herein, we determine that RstA directly binds its own promoter DNA to repress its own gene transcription. In addition, our data demonstrate that RstA directly represses toxin gene expression and gene expression of two toxin gene activators, TcdR and SigD, creating a complex regulatory network to tightly control toxin production. This study provides a novel regulatory link betweenC. difficilesporulation and toxin production. Further, our data suggest thatC. difficiletoxin production is regulated through a direct, species-specific sensing mechanism.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S842-S842
Author(s):  
Daniel Friedman ◽  
Karen Zurek ◽  
Leyla Asadi ◽  
Mao-Cheng Lee ◽  
Holly Hoang

Abstract Background Clostridioides difficile infection (CDI) is an important cause of morbidity and mortality and management continues to evolve. For laboratories that diagnose by detection of toxin gene, it is unclear whether reporting toxin production is additive to patient care. Furthermore, is there still a role for metronidazole (MNZ) given treatment guidelines now recommend vancomycin (VAN) as first-line therapy for non-severe cases? We analyzed cases of CDI in our hospital to assess outcomes of patients on MNZ vs. VAN and with or without toxin production. Methods A retrospective chart review of inpatients with CDI (based on detection of C. difficile toxin gene by PCR) was conducted between November 2017 and August 2018. Comparison of demographics and outcomes was performed in a) cases that were toxin-positive by enzyme immunoassay vs. negative and b) non-severe cases initially managed with MNZ vs. VAN. Results 76 patients were included (46 toxin-positive, 30 toxin-negative). Toxin-positive patients were older (mean age 77 vs. 62, p = 0.002) but had similar disease severity and initial treatment. A CDI recurrence occurred in 22% vs 0% in the toxin-positive cases (p = 0.006). Any CDI-related complication occurred in 23% of toxin-negative and 35% of toxin-positive cases (ns). After adjusting for toxin-status, age, and severity, the odds ratio of the composite outcome of any complication with toxin-positive CDI was not significant (OR 1.45 95% CI 0.45 -4.6, p = 0.52). There were 37 (49%) patients with non-severe CDI (27 MNZ, 10 VAN). Patients treated with VAN had higher stooling/day (6.3 vs 4.4, p = 0.04) and heart rate (p = 0.02). Initial MNZ use was associated with treatment escalation in 48% of cases compared with 10% in those treated with VAN alone (p = 0.03). CDI-associated mortality was higher in the VAN group (2/10 vs 0/27, p = 0.017). The rate of other complications was not significantly different. Conclusion Although no difference in the composite outcome of any CDI-related complication was detected between toxin positive vs negative patients, toxin-positivity may predict patients at risk for subsequent recurrence. Patients with non-severe CDI did not have increased risk of complications when managed with MNZ; however, they were more likely to require treatment escalation. Disclosures All authors: No reported disclosures.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Melanie Hennart ◽  
Leonardo G. Panunzi ◽  
Carla Rodrigues ◽  
Quentin Gaday ◽  
Sarah L. Baines ◽  
...  

Abstract Background Corynebacterium diphtheriae, the agent of diphtheria, is a genetically diverse bacterial species. Although antimicrobial resistance has emerged against several drugs including first-line penicillin, the genomic determinants and population dynamics of resistance are largely unknown for this neglected human pathogen. Methods Here, we analyzed the associations of antimicrobial susceptibility phenotypes, diphtheria toxin production, and genomic features in C. diphtheriae. We used 247 strains collected over several decades in multiple world regions, including the 163 clinical isolates collected prospectively from 2008 to 2017 in France mainland and overseas territories. Results Phylogenetic analysis revealed multiple deep-branching sublineages, grouped into a Mitis lineage strongly associated with diphtheria toxin production and a largely toxin gene-negative Gravis lineage with few toxin-producing isolates including the 1990s ex-Soviet Union outbreak strain. The distribution of susceptibility phenotypes allowed proposing ecological cutoffs for most of the 19 agents tested, thereby defining acquired antimicrobial resistance. Penicillin resistance was found in 17.2% of prospective isolates. Seventeen (10.4%) prospective isolates were multidrug-resistant (≥ 3 antimicrobial categories), including four isolates resistant to penicillin and macrolides. Homologous recombination was frequent (r/m = 5), and horizontal gene transfer contributed to the emergence of antimicrobial resistance in multiple sublineages. Genome-wide association mapping uncovered genetic factors of resistance, including an accessory penicillin-binding protein (PBP2m) located in diverse genomic contexts. Gene pbp2m is widespread in other Corynebacterium species, and its expression in C. glutamicum demonstrated its effect against several beta-lactams. A novel 73-kb C. diphtheriae multiresistance plasmid was discovered. Conclusions This work uncovers the dynamics of antimicrobial resistance in C. diphtheriae in the context of phylogenetic structure, biovar, and diphtheria toxin production and provides a blueprint to analyze re-emerging diphtheria.


2001 ◽  
Vol 75 (10) ◽  
pp. 4614-4624 ◽  
Author(s):  
Nicole Krieger ◽  
Volker Lohmann ◽  
Ralf Bartenschlager

ABSTRACT Studies of the Hepatitis C virus (HCV) replication cycle have been made possible with the development of subgenomic selectable RNAs that replicate autonomously in cultured cells. In these replicons the region encoding the HCV structural proteins was replaced by the neomycin phosphotransferase gene, allowing the selection of transfected cells that support high-level replication of these RNAs. Subsequent analyses revealed that, within selected cells, HCV RNAs had acquired adaptive mutations that increased the efficiency of colony formation by an unknown mechanism. Using a panel of replicons that differed in their degrees of cell culture adaptation, in this study we show that adaptive mutations enhance RNA replication. Transient-transfection assays that did not require selection of transfected cells demonstrated a clear correlation between the level of adaptation and RNA replication. The highest replication level was found with an adapted replicon carrying two amino acid substitutions located in NS3 and one in NS5A that acted synergistically. In contrast, the nonadapted RNA replicated only transiently and at a low level. The correlation between the efficiency of colony formation and RNA replication was corroborated with replicons in which the selectable marker gene was replaced by the gene encoding firefly luciferase. Upon transfection of naive Huh-7 cells, the levels of luciferase activity directly reflected the replication efficiencies of the various replicon RNAs. These results show that cell culture-adaptive mutations enhance HCV RNA replication.


2018 ◽  
Author(s):  
Adrianne N. Edwards ◽  
Brandon R. Anjuwon-Foster ◽  
Shonna M. McBride

ABSTRACTClostridioides difficileinfection (CDI) is a toxin-mediated disease. Several factors have been identified that influence the production of the two majorC. difficiletoxins, TcdA and TcdB, but prior published evidence suggested that additional unknown factors were involved in toxin regulation. Previously, we identified aC. difficileregulator, RstA, that promotes sporulation and represses motility and toxin production. We observed that the predicted DNA-binding domain of RstA was required for RstA-dependent repression of toxin genes, motility genes andrstAtranscription. In this study, we further investigated the regulation of toxin and motility gene expression by RstA. DNA pulldown assays confirmed that RstA directly binds therstApromoter via the predicted DNA-binding domain. Through mutational analysis of therstApromoter, we identified several nucleotides that are important for RstA-dependent transcriptional regulation. Further, we observed that RstA directly binds and regulates the promoters of the toxin genes,tcdAandtcdB, as well as the promoters for thesigDandtcdRgenes, which encode regulators of toxin gene expression. Complementation analyses with theClostridium perfringensRstA ortholog and a multi-species chimeric RstA protein revealed that theC. difficileC-terminal domain is required for RstA DNA-binding activity, suggesting that species-specific signaling controls RstA function. Our data demonstrate that RstA is a transcriptional repressor that autoregulates its own expression and directly inhibits transcription of the two toxin genes and two positive toxin regulators, thereby acting at multiple regulatory points to control toxin production.IMPORTANCEClostridioides difficileis an anaerobic, gastrointestinal pathogen of humans and other mammals.C. difficileproduces two major toxins, TcdA and TcdB, which cause the symptoms of the disease, and forms dormant endospores to survive the aerobic environment outside of the host. A recently discovered regulatory factor, RstA, inhibits toxin production and positively influences spore formation. Herein, we determine that RstA directly represses toxin gene expression and gene expression of two toxin gene activators, TcdR and SigD, creating a complex regulatory network to tightly control toxin production. In addition, the ability for RstA to bind DNA and repress toxin production requires the species-specific domain predicted to respond to small quorum-sensing peptides. This study provides a novel regulatory link betweenC. difficilesporulation and toxin production. Further, our data suggest thatC. difficiletoxin production is regulated through a direct sensing mechanism.


Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 248 ◽  
Author(s):  
Julia Österholm ◽  
Rafael V. Popin ◽  
David P. Fewer ◽  
Kaarina Sivonen

Cyanobacteria produce an array of toxins that pose serious health risks to humans and animals. The closely related diazotrophic genera, Anabaena, Dolichospermum and Aphanizomenon, frequently form poisonous blooms in lakes and brackish waters around the world. These genera form a complex now termed the Anabaena, Dolichospermum and Aphanizomenon (ADA) clade and produce a greater array of toxins than any other cyanobacteria group. However, taxonomic confusion masks the distribution of toxin biosynthetic pathways in cyanobacteria. Here we obtained 11 new draft genomes to improve the understanding of toxin production in these genera. Comparison of secondary metabolite pathways in all available 31 genomes for these three genera suggests that the ability to produce microcystin, anatoxin-a, and saxitoxin is associated with specific subgroups. Each toxin gene cluster was concentrated or even limited to a certain subgroup within the ADA clade. Our results indicate that members of the ADA clade encode a variety of secondary metabolites following the phylogenetic clustering of constituent species. The newly sequenced members of the ADA clade show that phylogenetic separation of planktonic Dolichospermum and benthic Anabaena is not complete. This underscores the importance of taxonomic revision of Anabaena, Dolichospermum and Aphanizomenon genera to reflect current phylogenomic understanding.


2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Adrianne N. Edwards ◽  
Ellen G. Krall ◽  
Shonna M. McBride

ABSTRACT The anaerobic spore former Clostridioides difficile causes significant diarrheal disease in humans and other mammals. Infection begins with the ingestion of dormant spores, which subsequently germinate within the host gastrointestinal tract. There, the vegetative cells proliferate and secrete two exotoxins, TcdA and TcdB, which cause disease symptoms. Although spore formation and toxin production are critical for C. difficile pathogenesis, the regulatory links between these two physiological processes are not well understood and are strain dependent. Previously, we identified a conserved C. difficile regulator, RstA, that promotes sporulation initiation through an unknown mechanism and directly and indirectly represses toxin and motility gene transcription in the historical isolate 630Δerm. To test whether perceived strain-dependent differences in toxin production and sporulation are mediated by RstA, we created an rstA mutant in the epidemic ribotype 027 strain R20291. RstA affected sporulation and toxin gene expression similarly but more robustly in R20291 than in 630Δerm. In contrast, no effect on motility gene expression was observed in R20291. Reporter assays measuring transcriptional regulation of tcdR, the sigma factor gene essential for toxin gene expression, identified sequence-dependent effects influencing repression by RstA and CodY, a global nutritional sensor, in four diverse C. difficile strains. Finally, sequence- and strain-dependent differences were evident in RstA negative autoregulation of rstA transcription. Altogether, our data suggest that strain-dependent differences in RstA regulation contribute to the sporulation and toxin phenotypes observed in R20291. Our data establish RstA as an important regulator of C. difficile virulence traits. IMPORTANCE Two critical traits of Clostridioides difficile pathogenesis are toxin production, which causes disease symptoms, and spore formation, which permits survival outside the gastrointestinal tract. The multifunctional regulator RstA promotes sporulation and prevents toxin production in the historical strain 630Δerm. Here, we show that RstA exhibits stronger effects on these phenotypes in an epidemic isolate, R20291, and additional strain-specific effects on toxin and rstA expression are evident. Our data demonstrate that sequence-specific differences within the promoter for the toxin regulator TcdR contribute to the regulation of toxin production by RstA and CodY. These sequence differences account for some of the variability in toxin production among isolates and may allow strains to differentially control toxin production in response to a variety of signals.


Sign in / Sign up

Export Citation Format

Share Document