scholarly journals Utilizing Playdoh in the Classroom to Construct a 3D Model Depicting Cellular Movements and Tissue Remodeling during Human Gastrulation, Early Organogenesis, and Embryonic Folding

Author(s):  
Ryan Hesterman ◽  
Shannon Rose ◽  
Will LeFever ◽  
Ryan Stewart ◽  
Martina Krone ◽  
...  

In classroom studies of mammalian embryology, students must fully grasp the cellular and tissue remodeling needed to initiate gastrulation to ensure comprehension of forthcoming developmental processes such as tissue specification and organogenesis. However, quickly and completely communicating three-dimensional concepts such as gastrulation, neurulation, and embryonic folding through common two-dimensional tools such as PowerPoint is challenging for students because this method lacks the spatial orientation needed to fully understand development.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
K. Y. Xu ◽  
Z. N. Wang ◽  
Y. N. Wang ◽  
J. W. Xiong ◽  
G. Wang

The performances of a two-dimensional electron gas (2DEG) based planar nanodevice are studied by a two-dimensional-three-dimensional (2D-3D) combined model and an entirely 2D model. In both models, 2DEGs are depicted by 2D ensemble Monte Carlo (EMC) method. However electric field distributions in the devices are obtained by self-consistently solving 2D and 3D Poisson equations for the 2D model and the 2D-3D model, respectively. Simulation results obtained by both models are almost the same at low bias while showing distinguished differences at high bias. The 2D model predicts larger output current and slightly higher threshold voltage of Gunn oscillations. Although the fundamental frequencies of current oscillations obtained by both models are similar, the deviation of wave shape from sinusoidal waveform obtained by the 2D model is more serious than that obtained by 2D-3D model. Moreover, results obtained by the 2D model are more sensitive both to the bias conditions and to the change of device parameters. Interestingly, a look-like second harmonic oscillation has been observed at DC bias. We contribute the origin of divergences in simulation results to the different coupling path of electric field in the two models. And the second-harmonic oscillations at DC bias should be the result of the appearance of concomitant oscillations beside the channel excited by strong electric-field effects.


2013 ◽  
Vol 124 (3) ◽  
pp. 596-601 ◽  
Author(s):  
William C. Yao ◽  
Rachel M. Regone ◽  
Nancy Huyhn ◽  
E. Brian Butler ◽  
Masayoshi Takashima

2021 ◽  
Vol 2108 (1) ◽  
pp. 012016
Author(s):  
Jieyu Liu ◽  
Ye Tang ◽  
Wenyu Cheng ◽  
Changpeng Li

Abstract The structural characteristics and basic design requirements of design of switched reluctance linear generator are introduced. According to the general principles and design experience of electromechanical design, the dimension of design of switched reluctance linear generator is determined, and the two-dimensional and three-dimensional static finite element models of design of switched reluctance linear generator are established in Flux 2D and Flux 3D respectively. By comparing the simulation results of the two-dimensional model and the three-dimensional model, it is found that the difference between the real simulation results of the 2D model and the 3D model is small, and the calculation time cost of the 2D finite element simulation is much lower than that of the 3D model. Therefore, the subsequent work of this paper adopts the 2D finite element model. Finally, the static electromagnetic field and electromagnetic characteristics of the design of switched reluctance linear generator are analyzed by finite element analysis.


2019 ◽  
Vol 1 (2) ◽  
pp. 103-106
Author(s):  
NUR-UL BALQES

Building Information Modelling (BIM) is a major transformation in the construction industry. The construction is among the best solutions to overcome too many problems faced in the construction industry. Conventional construction is associated with two-dimensional (2D)  drawing technology while BIM used three-dimensional (3D) model and each component in the construction process contains detail information. Therefore this study is to collect the previous studies on the benefits of BIM in infrastructure from the perspective of the constructor to view the use of this method. The basic development of BIM for infrastructure is emphasized in this observation. Benefits for the constructor for BIM for infrastructure will be analysed from past research. Through this observation, we have found many benefits for construction on BIM for infrastructure. However, the listed benefits are the most stated in past research. These benefits show that this technology of BIM is the most effective method that been applied in the infrastructure construction industry.


Author(s):  
Л.В. Карпюк ◽  
Н.О. Давіденко

The article discusses the methods of using the AutoCad graphic editor for creating three-dimensional objects. The possibilities of three-dimensional modeling in the AutoCad graphic editor for optimizing the educational process of bachelors of technical specialties are also considered. The article analyzes the best ways to create mechanical engineering drawings.The most developed software tool for the production of design documentation is AutoCAD - a universal graphic design system. Creating models of any complexity in space by using this graphic editor, the user will be able to see their relative position, estimate the distance between them. The model can be freely moved in space, viewing many options. The ability to control the point of view allows to conveniently select the view of the 3D model that is being developed. Zooming, panning in real time with the ability to freely rotate the camera around the model provide the ability to quickly view objects from any point of view. The article provides examples of choosing the most optimal option for creating a three-dimensional model. The traditional way to create a 3D model drawing is to make 2D views of the model. When creating a flat drawing, there is a possibility of error when making projections, since they are created independently from each other and consist of several images. It is rather difficult to represent an object in space from a flat drawing. At present, modern software graphic editors are aimed at creating three-dimensional models that allow to create realistic models and, on their basis, get two-dimensional projections. Graphic editor AutoCad allows to create three-dimensional objects based on standard commands, in the form of a cylinder, cone, box, torus, etc., when editing which you can get the desired shapes. After creating a three-dimensional model, the user can get its two-dimensional projections not only on the main planes, but also on any plane at will. The 3D modeling method allows you to create a complex drawing with any number of images based on a 3D model. There are ways to create 2D plane drawings from a 3D model and the ability to edit ready-made designs that can be inserted from model space into paper space. Editing takes place by changing the parameters of a 3D object in model space, and these changes are automatically reflected in paper space. This method allows us to use the tools to quickly create a system of 3-4 linked views for a 3D AutoCad model.


2016 ◽  
Vol 30 (05) ◽  
pp. 1650015 ◽  
Author(s):  
Chen Yao ◽  
Yingyi Zhang ◽  
Dianguang Ma ◽  
Houjun Tang

In an example scenario of magnetic energy harvesting, a spherical superscatterer is introduced to enhance coupling in a two-coil system. Although a three-dimensional (3D) model is preferred to fully model behavior in this example, to reduce computational complexity, an extension of transformation optics (TO) is proposed to reduce a 3D model to a two-dimensional (2D) axisymmetric model. The simulation results show details of a quasi-3D model of the superscatterer coupling enhancement of a two-coil system.


2014 ◽  
Vol 989-994 ◽  
pp. 5427-5430
Author(s):  
Zhi Yong Cheng ◽  
Rong Yue Xie ◽  
Lei Qiu ◽  
Xiao Zhou ◽  
Chao Fa Yu

Based on the current situation that the current ordnance equipment maintenance information management system is not intuitive, a new information system was designed and realized, which could display the two-dimensional Information and three-dimensional information synchronously. This system can well compatible with the existing one. Through studying the analysis of the original data structure, importing way for the 3D model of equipment, synchronous display for the 2D information and 3d model, the 3D information management system was realized, which provides a new digital method for equipment management person.


2008 ◽  
Vol 130 (10) ◽  
Author(s):  
H. Yin ◽  
L. Wang ◽  
S. D. Felicelli

A new two-dimensional (2D) transient finite element model was developed to study the thermal behavior during the multilayer deposition by the laser engineered net shaping rapid fabrication process. The reliability of the 2D model was evaluated by comparing the results obtained from the 2D model with those computed by a previously developed three-dimensional (3D) model. It is found that the predicted temperature distributions and the cooling rates in the molten pool and its surrounding area agree well with the experiment data available in literature and with the previous results calculated with the 3D model. It is also concluded that, for the geometry analyzed in this study, the 2D model can be used with good accuracy, instead of the computationally much more expensive 3D model, if certain precautions are taken to compensate for the 3D effects of the substrate. In particular, a 2D model could be applied to an in situ calculation of the thermal behavior of the deposited part during the fabrication, allowing dynamic control of the process. The 2D model is also applied to study the effects of substrate size and idle time on the thermal field and size of the molten pool.


Author(s):  
Brice Bognet ◽  
Adrien Leygue ◽  
Francisco Chinesta

Many models in polymer processing and composites manufacturing are defined in degenerated three-dimensional domains (3D), involving plate or shell geometries. The reduction of models from 3D to two-dimensional (2D) is not obvious when complex physics or particular geometries are involved. The hypotheses to be introduced for reaching this dimensionality reduction are unclear, and most of the possible proposals will have a narrow interval of validity. The only gateway is to explore new discretisation strategies able to circumvent or at least alleviate the drawbacks related to mesh-based discretisations of fully 3D models defined in plate or shell domains. Appropriate separated representation of the involved fields within the context of the proper generalised decomposition allows solving the fully 3D model by keeping a 2D characteristic computational complexity.


2021 ◽  
Vol 10 (88) ◽  

With the rapid advances in visual perception and processing technologies, it has become easier to create 3D models (three dimensional visuals that have width height and depth data) of objects by processing 2D (two dimensional images that have width and height data like photography) images obtained from real life with the help of certain algorithms. These systems, which convert from two-dimensional painting to three-dimensional model format, now describe and translate most objects correctly. Like photogrametry and laser scanning, is used to quickly transfer large areas to 3D media, especially with coating materials. 3D images obtained by scanning 2D images show differences in terms of the obtained model quality and polygon density. This system, which serves to obtain very fast 3D models, is frequently used in computer games development, digital art and production / cinema studies, painting, sculpting, ceramic and photography to obtain a spesific result. In the research, image-based 3D model creation technologies were mentioned. The types of this technology and its usage purposes, methods and problems are the topics of this article Also problems faced while engaging the models accured from this methods to other platforms are included in the article. In this context, the aim of the study is to recognize the new scanning modeling processes and algorithms supported by artificial intelligence and to determine the usage areas of these modeling techniques in art. Keywords: Art, 3D Model, A.I., LIDAR, Photogrametry, Digital Art


Sign in / Sign up

Export Citation Format

Share Document