scholarly journals Persistence of ambigrammatic narnaviruses requires translation of the reverse open reading frame

2021 ◽  
Author(s):  
Hanna Retallack ◽  
Katerina D. Popova ◽  
Matthew T. Laurie ◽  
Sara Sunshine ◽  
Joseph L. DeRisi

Narnaviruses are RNA viruses detected in diverse fungi, plants, protists, arthropods and nematodes. Though initially described as simple single-gene non-segmented viruses encoding RNA-dependent RNA polymerase (RdRp), a subset of narnaviruses referred to as “ambigrammatic” harbor a unique genomic configuration consisting of overlapping open reading frames (ORFs) encoded on opposite strands. Phylogenetic analysis supports selection to maintain this unusual genome organization, but functional investigations are lacking. Here, we establish the mosquito-infecting Culex narnavirus 1 (CxNV1) as a model to investigate the functional role of overlapping ORFs in narnavirus replication. In CxNV1, a reverse ORF without homology to known proteins covers nearly the entire 3.2 kb segment encoding the RdRp. Additionally, two opposing and nearly completely overlapping novel ORFs are found on the second putative CxNV1 segment, the 0.8 kb “Robin” RNA. We developed a system to launch CxNV1 in a naïve mosquito cell line, then showed that functional RdRp is required for persistence of both segments, and an intact reverse ORF is required on the RdRp segment for persistence. Mass spectrometry of persistently CxNV1-infected cells provided evidence for translation of this reverse ORF. Finally, ribosome profiling yielded a striking pattern of footprints for all four CxNV1 RNA strands that was distinct from actively-translating ribosomes on host mRNA or co-infecting RNA viruses. Taken together, these data raise the possibility that the process of translation itself is important for persistence of ambigrammatic narnaviruses, potentially by protecting viral RNA with ribosomes, thus suggesting a heretofore undescribed viral tactic for replication and transmission. IMPORTANCE Fundamental to our understanding of RNA viruses is a description of which strand(s) of RNA are transmitted as the viral genome, relative to which encode the viral proteins. Ambigrammatic narnaviruses break the mold. These viruses, found broadly in fungi, plants, and insects, have the unique feature of two overlapping genes encoded on opposite strands, comprising nearly the full length of the viral genome. Such extensive overlap is not seen in other RNA viruses, and comes at the cost of reduced evolutionary flexibility in the sequence. The present study is motivated by investigating the benefits which balance that cost. We show for the first time a functional requirement for the ambigrammatic genome configuration in Culex narnavirus 1, which suggests a model for how translation of both strands might benefit this virus. Our work highlights a new blueprint for viral persistence, distinct from strategies defined by canonical definitions of the coding strand.

2020 ◽  
Author(s):  
Hanna Retallack ◽  
Katerina D. Popova ◽  
Matthew T. Laurie ◽  
Sara Sunshine ◽  
Joseph L. DeRisi

ABSTRACTNarnaviruses are RNA viruses detected in diverse fungi, plants, protists, arthropods and nematodes. Though initially described as simple single-gene non-segmented viruses encoding RNA-dependent RNA polymerase (RdRp), a subset of narnaviruses referred to as “ambigrammatic” harbor a unique genomic configuration consisting of overlapping open reading frames (ORFs) encoded on opposite strands. Phylogenetic analysis supports selection to maintain this unusual genome organization, but functional investigations are lacking. Here, we establish the mosquito-infecting Culex narnavirus 1 (CxNV1) as a model to investigate the functional role of overlapping ORFs in narnavirus replication. In CxNV1, a reverse ORF without homology to known proteins covers nearly the entire 3.2 kb segment encoding the RdRp. Additionally, two opposing and nearly completely overlapping novel ORFs are found on the second putative CxNV1 segment, the 0.8 kb “Robin” RNA. We developed a system to launch CxNV1 in a naïve mosquito cell line, then showed that functional RdRp is required for persistence of both segments, and an intact reverse ORF is required on the RdRp segment for persistence. Mass spectrometry of persistently CxNV1-infected cells provided evidence for translation of this reverse ORF. Finally, ribosome profiling yielded a striking pattern of footprints for all four CxNV1 RNA strands that was distinct from actively-translating ribosomes on host mRNA or co-infecting RNA viruses. Taken together, these data raise the possibility that the process of translation itself is important for persistence of ambigrammatic narnaviruses, potentially by protecting viral RNA with ribosomes, thus suggesting a heretofore undescribed viral tactic for replication and transmission.IMPORTANCEFundamental to our understanding of RNA viruses is a description of which strand(s) of RNA are transmitted as the viral genome, relative to which encode the viral proteins. Ambigrammatic narnaviruses break the mold. These viruses, found broadly in fungi, plants, and insects, have the unique feature of two overlapping genes encoded on opposite strands, comprising nearly the full length of the viral genome. Such extensive overlap is not seen in other RNA viruses, and comes at the cost of reduced evolutionary flexibility in the sequence. The present study is motivated by investigating the benefits which balance that cost. We show for the first time a functional requirement for the ambigrammatic genome configuration in Culex narnavirus 1, which suggests a model for how translation of both strands might benefit this virus. Our work highlights a new blueprint for viral persistence, distinct from strategies defined by canonical definitions of the coding strand.


2007 ◽  
Vol 204 (11) ◽  
pp. 2501-2504 ◽  
Author(s):  
Jonathan W. Yewdell ◽  
Heather D. Hickman

CD8+ T cells rapidly recognize virus-infected cells due to the generation of antigenic peptides from defective ribosomal products (DRiPs) that are encoded by standard open reading frames (ORFs). New data now show that alternative reading frame (ARF) DRiPs can also induce robust CD8+ T cell responses. ARF-specific T cells control retroviral replication and select for viral escape in monkeys, providing the most compelling evidence to date for the biological relevance of ARF immunosurveillance.


2018 ◽  
Author(s):  
Anica Scholz ◽  
Florian Eggenhofer ◽  
Rick Gelhausen ◽  
Björn Grüning ◽  
Kathi Zarnack ◽  
...  

AbstractRibosome profiling (ribo-seq) provides a means to analyze active translation by determining ribosome occupancy in a transcriptome-wide manner. The vast majority of ribosome protected fragments (RPFs) resides within the protein-coding sequence of mRNAs. However, commonly reads are also found within the transcript leader sequence (TLS) (aka 5’ untranslated region) preceding the main open reading frame (ORF), indicating the translation of regulatory upstream ORFs (uORFs). Here, we present a workflow for the identification of translation-regulatory uORFs. Specifically, uORF-Tools identifies uORFs within a given dataset and generates a uORF annotation file. In addition, a comprehensive human uORF annotation file, based on 35 ribo-seq files, is provided, which can serve as an alternative input file for the workflow. To assess the translation-regulatory activity of the uORFs, stimulus-induced changes in the ratio of the RPFs residing in the main ORFs relative to those found in the associated uORFs are determined. The resulting output file allows for the easy identification of candidate uORFs, which have translation-inhibitory effects on their associated main ORFs. uORF-Tools is available as a free and open Snakemake workflow at https://github.com/Biochemistry1-FFM/uORF-Tools. It is easily installed and all necessary tools are provided in a version-controlled manner, which also ensures lasting usability. uORF-Tools is designed for intuitive use and requires only limited computing times and resources.


2021 ◽  
Author(s):  
Muhammad Amir Yunus

The genomes of positive strand RNA viruses often contain more than one open reading frame. Some of these viruses have evolved novel mechanisms to regulate the synthesis of the other open reading frames that in some cases involved the production of a subgenomic RNA or RNAs. Very often, the presence of the subgenomic RNA is used as indicator for active viral genome replication. Norovirus, a major cause for gastroenteritis as well as with all other caliciviruses follow a typical positive strand RNA viruses genome replication strategy. In addition, noroviruses also produce a subgenomic RNA during their replication in infected cells. Efficient and adequate synthesis of norovirus subgenomic RNA is crucial for successful viral replication and productive infection leading to the generation of infectious viral progeny. This chapter will dissect the significant findings on mechanisms involved in norovirus genome replication as well as focusing on subgenomic RNA production.


2018 ◽  
Author(s):  
Shohei Kitano ◽  
Gabriel Pratt ◽  
Keizo Takao ◽  
Yasunori Aizawa

SUMMARYUpstream open reading frames (uORFs) are established as cis-acting elements for eukaryotic translation of annotated ORFs (anORFs) located on the same mRNAs. Here, we identified a mammalian uORF with functions that are independent from anORF translation regulation. Bioinformatics screening using ribosome profiling data of human and mouse brains yielded 308 neurologically vital genes from which anORF and uORFs are polycistronically translated in both species. Among them, Arhgef9 contains a uORF named SPICA, which is highly conserved among vertebrates and stably translated only in specific brain regions of mice. Disruption of SPICA translation by ATG-to-TAG substitutions did not perturb translation or function of its anORF product, collybistin. SPICA-null mice displayed abnormal maternal reproductive performance and enhanced anxiety-like behavior, characteristic of ARHGEF9-associated neurological disorders. This study demonstrates that mammalian uORFs can be independent genetic units, revising the prevailing dogma of the monocistronic gene in mammals, and even eukaryotes.


2000 ◽  
Vol 74 (2) ◽  
pp. 997-1003 ◽  
Author(s):  
Ana I. Soldevila ◽  
Said A. Ghabrial

ABSTRACT The undivided double-stranded RNA (dsRNA) genome ofHelminthosporium victoriae 190S virus (Hv190SV) (genusTotivirus) consists of two large overlapping open reading frames (ORFs). The 5′-proximal ORF encodes a capsid protein (CP), and the downstream, 3′-proximal ORF encodes an RNA-dependent RNA polymerase (RDRP). Unlike the RDRPs of some other totiviruses, which are expressed as a CP-RDRP (Gag-Pol-like) fusion protein, the Hv190SV RDRP is detected only as a separate, nonfused polypeptide. In this study, we examined the expression of the RDRP ORF fused in frame to the coding sequence of the green fluorescent protein (GFP) in bacteria andSchizosaccharomyces pombe cells. The GFP fusions were readily detected in bacteria transformed with the monocistronic construct RDRP:GFP; expression of the downstream RDRP:GFP from the dicistronic construct CP-RDRP:GFP could not be detected. However, fluorescence microscopy and Western blot analysis indicated that RDRP:GFP was expressed at low levels from its downstream ORF in the dicistronic construct in S. pombe cells. No evidence that the RDRP ORF was expressed from a transcript shorter than the full-length dicistronic mRNA was found. A coupled termination-reinitiation mechanism that requires host or eukaryotic cell factors is proposed for the expression of Hv190SV RDRP.


2016 ◽  
Vol 61 (3) ◽  
Author(s):  
Costas C. Papagiannitsis ◽  
Leonidas S. Tzouvelekis ◽  
Eva Tzelepi ◽  
Vivi Miriagou

ABSTRACT By searching the Integrall integron and GenBank databases, a novel open reading frame (ORF) of 51 nucleotides (nts) (ORF-17) overlapping the previously described ORF-11 was identified within the attI1 site in virtually all class 1 integrons. Using a set of isogenic plasmid constructs carrying a single gene cassette (bla GES-1) and possessing a canonical translation initiation region, we found that ORF-17 contributes to GES-1 expression.


2015 ◽  
Author(s):  
Lorenzo Calviello ◽  
Neelanjan Mukherjee ◽  
Emanuel Wyler ◽  
Henrik Zauber ◽  
Antje Hirsekorn ◽  
...  

RNA sequencing protocols allow for quantifying gene expression regulation at each individual step, from transcription to protein synthesis. Ribosome Profiling (Ribo-seq) maps the positions of translating ribosomes over the entire transcriptome. Despite its great potential, a rigorous statistical approach to identify translated regions by means of the characteristic three-nucleotide periodicity of Ribo-seq data is not yet available. To fill this gap, we developed RiboTaper, which quantifies the significance of periodic Ribo-seq reads via spectral analysis methods. We applied RiboTaper on newly generated, deep Ribo-seq data in HEK293 cells, to derive an extensive map of translation that covers Open Reading Frame (ORF) annotations for more than 11,000 protein- coding genes. We also find distinct ribosomal signatures for several hundred detected upstream ORFs and ORFs in annotated non-coding genes (ncORFs). Mass spectrometry data confirms that RiboTaper achieves excellent coverage of the cellular proteome and validates dozens of novel peptide products. Collectively, RiboTaper (available at https://ohlerlab.mdc-berlin.de/software/ ) is a powerful method for comprehensive de novo identification of actively used ORFs in the human genome.


1998 ◽  
Vol 180 (9) ◽  
pp. 2522-2530 ◽  
Author(s):  
Sergio L. Fuenmayor ◽  
Mark Wild ◽  
Alastair L. Boyes ◽  
Peter A. Williams

ABSTRACT Pseudomonas sp. strain U2 was isolated from oil-contaminated soil in Venezuela by selective enrichment on naphthalene as the sole carbon source. The genes for naphthalene dioxygenase were cloned from the plasmid DNA of strain U2 on an 8.3-kbBamHI fragment. The genes for the naphthalene dioxygenase genes nagAa (for ferredoxin reductase), nagAb(for ferredoxin), and nagAc and nagAd (for the large and small subunits of dioxygenase, respectively) were located by Southern hybridizations and by nucleotide sequencing. The genes for nagB (for naphthalenecis-dihydrodiol dehydrogenase) and nagF (for salicylaldehyde dehydrogenase) were inferred from subclones by their biochemical activities. Between nagAa and nagAbwere two open reading frames, homologs of which have also been identified in similar locations in two nitrotoluene-using strains (J. V. Parales, A. Kumar, R. E. Parales, and D. T. Gibson, Gene 181:57–61, 1996; W.-C. Suen, B. Haigler, and J. C. Spain, J. Bacteriol. 178:4926–4934, 1996) and a naphthalene-using strain (G. J. Zylstra, E. Kim, and A. K. Goyal, Genet. Eng. 19:257–269, 1997). Recombinant Escherichia coli strains with plasmids carrying this region were able to convert salicylate to gentisate, which was identified by a combination of gas chromatography-mass spectrometry and nuclear magnetic resonance. The first open reading frame, designated nagG, encodes a protein with characteristics of a Rieske-type iron-sulfur center homologous to the large subunits of dihydroxylating dioxygenases, and the second open reading frame, designatednagH, encodes a protein with limited homology to the small subunits of the same dioxygenases. Cloned together inE. coli, nagG, nagH, andnagAb, were able to convert salicylate (2-hydroxybenzoate) into gentisate (2,5-dihydroxybenzoate) and therefore encode a salicylate 5-hydroxylase activity. Single-gene knockouts ofnagG, nagH, and nagAb demonstrated their functional roles in the formation of gentisate. It is proposed that NagG and NagH are structural subunits of salicylate 5-hydroxylase linked to an electron transport chain consisting of NagAb and NagAa, although E. coli appears to be able to partially substitute for the latter. This constitutes a novel mechanism for monohydroxylation of the aromatic ring. Salicylate hydroxylase and catechol 2,3-dioxygenase in strain U2 could not be detected either by enzyme assay or by Southern hybridization. However growth on both naphthalene and salicylate caused induction of gentisate 1,2-dioxygenase, confirming this route for salicylate catabolism in strain U2. Sequence comparisons suggest that the novel gene ordernagAa-nagG-nagH-nagAb-nagAc-nagAd-nagB-nagF represents the archetype for naphthalene strains which use the gentisate pathway rather than the meta cleavage pathway of catechol.


Sign in / Sign up

Export Citation Format

Share Document