scholarly journals Antiviral Activity and Adaptive Evolution of Avian Tetherins

2020 ◽  
Vol 94 (12) ◽  
Author(s):  
Veronika Krchlíková ◽  
Helena Fábryová ◽  
Tomáš Hron ◽  
Janet M. Young ◽  
Anna Koslová ◽  
...  

ABSTRACT Tetherin/BST-2 is an antiviral protein that blocks the release of enveloped viral particles by linking them to the membrane of producing cells. At first, BST-2 genes were described only in humans and other mammals. Recent work identified BST-2 orthologs in nonmammalian vertebrates, including birds. Here, we identify the BST-2 sequence in domestic chicken (Gallus gallus) for the first time and demonstrate its activity against avian sarcoma and leukosis virus (ASLV). We generated a BST-2 knockout in chicken cells and showed that BST-2 is a major determinant of an interferon-induced block of ASLV release. Ectopic expression of chicken BST-2 blocks the release of ASLV in chicken cells and of human immunodeficiency virus type 1 (HIV-1) in human cells. Using metabolic labeling and pulse-chase analysis of HIV-1 Gag proteins, we verified that chicken BST-2 blocks the virus at the release stage. Furthermore, we describe BST-2 orthologs in multiple avian species from 12 avian orders. Previously, some of these species were reported to lack BST-2, highlighting the difficulty of identifying sequences of this extremely variable gene. We analyzed BST-2 genes in the avian orders Galliformes and Passeriformes and showed that they evolve under positive selection. This indicates that avian BST-2 is involved in host-virus evolutionary arms races and suggests that BST-2 antagonists exist in some avian viruses. In summary, we show that chicken BST-2 has the potential to act as a restriction factor against ASLV. Characterizing the interaction of avian BST-2 with avian viruses is important in understanding innate antiviral defenses in birds. IMPORTANCE Birds are important hosts of viruses that have the potential to cause zoonotic infections in humans. However, only a few antiviral genes (called viral restriction factors) have been described in birds, mostly because birds lack counterparts of highly studied mammalian restriction factors. Tetherin/BST-2 is a restriction factor, originally described in humans, that blocks the release of newly formed virus particles from infected cells. Recent work identified BST-2 in nonmammalian vertebrate species, including birds. Here, we report the BST-2 sequence in domestic chicken and describe its antiviral activity against a prototypical avian retrovirus, avian sarcoma and leukosis virus (ASLV). We also identify BST-2 genes in multiple avian species and show that they evolve rapidly in birds, which is an important indication of their relevance for antiviral defense. Analysis of avian BST-2 genes will shed light on defense mechanisms against avian viral pathogens.

mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Mollie M. McDonnell ◽  
Kate H. D. Crawford ◽  
Adam S. Dingens ◽  
Jesse D. Bloom ◽  
Michael Emerman

ABSTRACT Humans encode proteins, called restriction factors, that inhibit replication of viruses such as HIV-1. The members of one family of antiviral proteins, apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; shortened here to A3), act by deaminating cytidines to uridines during the reverse transcription reaction of HIV-1. The A3 locus encodes seven genes, named A3A to A3H. These genes have either one or two cytidine deaminase domains, and several of these A3s potently restrict HIV-1. A3C, which has only a single cytidine deaminase domain, however, inhibits HIV-1 only very weakly. We tested novel double domain protein combinations by genetically linking two A3C genes to make a synthetic tandem domain protein. This protein created a “super restriction factor” that had more potent antiviral activity than the native A3C protein, which correlated with increased packaging into virions. Furthermore, disabling one of the active sites of the synthetic tandem domain protein resulted in an even greater increase in the antiviral activity—recapitulating a similar evolution seen in A3F and A3G (double domain A3s that use only a single catalytically active deaminase domain). These A3C tandem domain proteins do not have an increase in mutational activity but instead inhibit formation of reverse transcription products, which correlates with their ability to form large higher-order complexes in cells. Finally, the A3C-A3C super restriction factor largely escaped antagonism by the HIV-1 viral protein Vif. IMPORTANCE As a part of the innate immune system, humans encode proteins that inhibit viruses such as HIV-1. These broadly acting antiviral proteins do not protect humans from viral infections because viruses encode proteins that antagonize the host antiviral proteins to evade the innate immune system. One such example of a host antiviral protein is APOBEC3C (A3C), which weakly inhibits HIV-1. Here, we show that we can improve the antiviral activity of A3C by duplicating the DNA sequence to create a synthetic tandem domain and, furthermore, that the proteins thus generated are relatively resistant to the viral antagonist Vif. Together, these data give insights about how nature has evolved a defense against viral pathogens such as HIV.


2020 ◽  
Author(s):  
Mollie M. McDonnell ◽  
Kate H.D. Crawford ◽  
Adam S. Dingens ◽  
Jesse D. Bloom ◽  
Michael Emerman

AbstractHumans encode proteins, called restriction factors, that inhibit replication of viruses like HIV-1. One family of antiviral proteins, apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3, shortened to A3) acts by deaminating cytidines to uridines during the reverse transcription reaction of HIV-1. The A3 locus encodes seven genes, named A3A-A3H. These genes either have one or two cytidine deaminase domains and several of these A3s potently restrict HIV-1. A3C, which has only a single cytidine deaminase domain, however, inhibits HIV-1 only very weakly. We tested novel double domain protein combinations by genetically linking two A3C genes to make a synthetic tandem domain protein. This protein created a “super restriction factor” that had more potent antiviral activity than the native A3C protein, which correlated with increased packaging into virions. Furthermore, disabling one of the active sites of the synthetic tandem domain protein results in an even greater increase in the antiviral activity—recapitulating a similar evolution seen in A3F and A3G (double domain A3s that only use a single catalytically active deaminase domain). These A3C tandem domain proteins do not have an increase in mutational activity, but instead inhibit formation of reverse transcription products which correlates with their ability to form large higher order complexes in cells. Finally, the A3C-A3C super restriction factor largely escaped antagonism by the HIV-1 viral protein, Vif.ImportanceAs a part of the innate immune system, humans encode proteins that inhibit viruses like HIV-1. These broadly acting antiviral proteins do not protect humans from viral infections because viruses encode proteins that antagonize the host antiviral proteins to evade the innate immune system. One such example of a host antiviral protein is APOBEC3C (A3C), which weakly inhibits HIV-1. Here, we show that we can improve the antiviral activity of A3C by duplicating the DNA sequence to create a synthetic tandem domain, and furthermore, are relatively resistant to the viral antagonist, Vif. Together, these data give insights about how nature has evolved a defense against viral pathogens like HIV.


2021 ◽  
Vol 118 (21) ◽  
pp. e2101450118
Author(s):  
Tafhima Haider ◽  
Xenia Snetkov ◽  
Clare Jolly

SERINC5 is a potent lentiviral restriction factor that gets incorporated into nascent virions and inhibits viral fusion and infectivity. The envelope glycoprotein (Env) is a key determinant for SERINC restriction, but many aspects of this relationship remain incompletely understood, and the mechanism of SERINC5 restriction remains unresolved. Here, we have used mutants of HIV-1 and HIV-2 to show that truncation of the Env cytoplasmic tail (ΔCT) confers complete resistance of both viruses to SERINC5 and SERINC3 restriction. Critically, fusion of HIV-1 ΔCT virus was not inhibited by SERINC5 incorporation into virions, providing a mechanism to explain how EnvCT truncation allows escape from restriction. Neutralization and inhibitor assays showed ΔCT viruses have an altered Env conformation and fusion kinetics, suggesting that EnvCT truncation dysregulates the processivity of entry, in turn allowing Env to escape targeting by SERINC5. Furthermore, HIV-1 and HIV-2 ΔCT viruses were also resistant to IFITMs, another entry-targeting family of restriction factors. Notably, while the EnvCT is essential for Env incorporation into HIV-1 virions and spreading infection in T cells, HIV-2 does not require the EnvCT. Here, we reveal a mechanism by which human lentiviruses can evade two potent Env-targeting restriction factors but show key differences in the capacity of HIV-1 and HIV-2 to exploit this. Taken together, this study provides insights into the interplay between HIV and entry-targeting restriction factors, revealing viral plasticity toward mechanisms of escape and a key role for the long lentiviral EnvCT in regulating these processes.


2016 ◽  
Vol 90 (18) ◽  
pp. 8085-8089 ◽  
Author(s):  
Ben Murrell ◽  
Thomas Vollbrecht ◽  
John Guatelli ◽  
Joel O. Wertheim

ABSTRACTMolecular evolutionary arms races between viruses and their hosts are important drivers of adaptation. These Red Queen dynamics have been frequently observed in primate retroviruses and their antagonists, host restriction factor genes, such as APOBEC3F/G, TRIM5-α, SAMHD1, and BST-2. Host restriction factors have experienced some of the most intense and pervasive adaptive evolution documented in primates. Recently, two novel host factors, SERINC3 and SERINC5, were identified as the targets of HIV-1 Nef, a protein crucial for the optimal infectivity of virus particles. Here, we compared the evolutionary fingerprints of SERINC3 and SERINC5 to those of other primate restriction factors and to a set of other genes with diverse functions. SERINC genes evolved in a manner distinct from the canonical arms race dynamics seen in the other restriction factors. Despite their antiviral activity against HIV-1 and other retroviruses, SERINC3 and SERINC5 have a relatively uneventful evolutionary history in primates.IMPORTANCERestriction factors are host proteins that block viral infection and replication. Many viruses, like HIV-1 and related retroviruses, evolved accessory proteins to counteract these restriction factors. The importance of these interactions is evidenced by the intense adaptive selection pressures that dominate the evolutionary histories of both the host and viral genes involved in this so-called arms race. The dynamics of these arms races can point to mechanisms by which these viral infections can be prevented. Two human genes, SERINC3 and SERINC5, were recently identified as targets of an HIV-1 accessory protein important for viral infectivity. Unexpectedly, we found that these SERINC genes, unlike other host restriction factor genes, show no evidence of a recent evolutionary arms race with viral pathogens.


2021 ◽  
Author(s):  
Amit Gaba ◽  
Mark A Hix ◽  
Sana Suhail ◽  
Ben Flath ◽  
Brock Boysan ◽  
...  

The APOBEC3 (A3) family of single-stranded DNA cytidine deaminases are host restriction factors that inhibit lentiviruses, such as HIV-1, in the absence of the Vif protein that causes their degradation. Deamination of cytidine in HIV-1 (-)DNA forms uracil that causes inactivating mutations when uracil is used as a template for (+)DNA synthesis. For APOBEC3C (A3C), the chimpanzee and gorilla orthologues are more active than human A3C, and the Old World Monkey A3C from rhesus macaque (rh) is not active against HIV-1. Multiple integrated analyses determined why rhA3C was not active against HIV-1 and how to increase this activity. Biochemical, virological, and coevolutionary analyses combined with molecular dynamics simulations showed that the key amino acids needed to promote rhA3C antiviral activity also promoted dimerization. Although rhA3C shares a similar dimer interface with hominid A3C, the key amino acid contacts were different. Overall, our results determine the basis for why rhA3C is less active than human A3C, establish the amino acid network for dimerization and increased activity, and track the loss and gain of A3C antiviral activity in primates. The coevolutionary analysis of the A3C dimerization interface provides a basis from which to analyze dimerization interfaces of other A3 family members.


2019 ◽  
Author(s):  
Molly Ohainle ◽  
Kyusik Kim ◽  
Sevnur Keceli ◽  
Abby Felton ◽  
Ed Campbell ◽  
...  

AbstractThe HIV-1 capsid protein makes up the core of the virion and plays a critical role in early steps of HIV replication. Due to its exposure in the cytoplasm after entry, HIV capsid is a target for host cell factors that act directly to block infection such as TRIM5 and MxB. Several host proteins also play a role in facilitating infection, including in the protection of HIV-1 capsid from recognition by host cell restriction factors. Through an unbiased screening approach, called HIV-CRISPR, we show that the Cyclophilin A-binding deficient P90A HIV-1 capsid mutant becomes highly-sensitized to TRIM5alpha restriction in IFN-treated cells. Further, the CPSF6-binding deficient, N74D HIV-1 capsid mutant is sensitive to restriction mediated by human TRIM34, a close paralog of the well-characterized HIV restriction factor TRIM5. This restriction occurs at the step of reverse transcription, is independent of interferon stimulation and limits HIV-1 infection in key target cells of HIV infection including CD4+ T cells and monocyte-derived dendritic cells. TRIM34 restriction requires TRIM5alpha as knockout or knockdown of TRIM5alpha results in a loss of antiviral activity. TRIM34 can also restrict some SIV capsids. Through immunofluorescence studies, we show that TRIM34 and TRIM5alpha colocalize to cytoplasmic bodies and are more frequently observed to be associated with infecting N74D capsids than with WT capsids. Our results identify TRIM34 as an HIV-1 CA-targeting restriction factor and highlight the potential role for heteromultimeric TRIM interactions in contributing restriction of HIV-1 infection in human cells.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 51
Author(s):  
Cong Zeng ◽  
Abdul A. Waheed ◽  
Tianliang Li ◽  
Jingyou Yu ◽  
Yi-Min Zheng ◽  
...  

T cell SERINC proteins were recently identified as human immunodeficiency virus (HIV) restriction factors that diminish viral infectivity by incorporation into virions. Here we provide evidence that SERINC3 and SERINC5 perform additional antiviral activity by enhancing the type I interferon (IFN-I) and NF-κB signaling pathways. SERINC5 interacts with the mitochondrial antiviral-signaling (MAVS) and TRAF6 proteins, resulting in MAVS aggregation and TRAF6 polyubiquitination. Knockdown of SERINC5 in the target cell increases single-round HIV-1 infectivity, as well as infection by recombinant vesicular stomatitis virus (rVSV) bearing VSV-G or Ebola virus (EBOV) glycoprotein (GP). Infection by an endemic Asian strain of Zika virus (ZIKV) FSS13025 is also enhanced by SERINC5 knockdown, suggesting that SERINC5 has direct antiviral activity. Further experiments indicated that the antiviral activity of SERINC5 is IFN-I dependent. Altogether, our work uncovered a new function of SERINC proteins that promotes IFN-I and NF-B inflammatory signaling, thus contributing to SERINC-mediated antiviral activity.


2015 ◽  
Vol 90 (6) ◽  
pp. 3056-3064 ◽  
Author(s):  
Silvana Opp ◽  
Daniel A. S. A. Vieira ◽  
Bianca Schulte ◽  
Sumit K. Chanda ◽  
Felipe Diaz-Griffero

ABSTRACTMxB restricts HIV-1 infection by directly interacting with the HIV-1 core, which is made of viral capsid; however, the contribution of MxB to the HIV-1 restriction observed in alpha interferon (IFN-α)-treated human cells is unknown. To understand this contribution, we used HIV-1 bearing the G208R capsid mutant (HIV-1-G208R), which overcomes the restriction imposed by cells expressing MxB. Here we showed that the reason why MxB does not block HIV-1-G208R is that MxB does not interact with HIV-1 cores bearing the mutation G208R. To understand whether MxB contributes to the HIV-1 restriction imposed by IFN-α-treated human cells, we challenged IFN-α-treated cells with HIV-G208R and found that MxB does not contribute to the restriction imposed by IFN-α-treated cells. To more directly test the contribution of MxB, we challenged IFN-α-treated human cells that are knocked out for the expression of MxB with HIV-1. These experiments suggested that MxB does not contribute to the HIV-1 restriction observed in IFN-α-treated human cells.IMPORTANCEMxB is a restriction factor that blocks HIV-1 infection in human cells. Although it has been postulated that MxB is the factor that blocks HIV-1 infection in IFN-α-treated cells, this is a hard concept to grasp due to the great number of genes that are induced by IFN-α in cells from the immune system. The work presented here elegantly demonstrates that MxB has minimal or no contribution to the ability of IFN-α-treated human cells to block HIV-1 infection. Furthermore, this work suggests the presence of novel restriction factors in IFN-α-treated human cells that block HIV-1 infection.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 395
Author(s):  
Janina Deutschmann ◽  
Thomas Gramberg

The SAM and HD domain-containing protein 1 (SAMHD1) is a dNTP triphosphohydrolase that plays a crucial role for a variety of different cellular functions. Besides balancing intracellular dNTP concentrations, facilitating DNA damage repair, and dampening excessive immune responses, SAMHD1 has been shown to act as a major restriction factor against various virus species. In addition to its well-described activity against retroviruses such as HIV-1, SAMHD1 has been identified to reduce the infectivity of different DNA viruses such as the herpesviruses CMV and EBV, the poxvirus VACV, or the hepadnavirus HBV. While some viruses are efficiently restricted by SAMHD1, others have developed evasion mechanisms that antagonize the antiviral activity of SAMHD1. Within this review, we summarize the different cellular functions of SAMHD1 and highlight the countermeasures viruses have evolved to neutralize the restriction factor SAMHD1.


2021 ◽  
Author(s):  
Mollie M McDonnell ◽  
Suzanne C. Karvonen ◽  
Amit Gaba ◽  
Ben Flath ◽  
Linda Chelico ◽  
...  

The A POBEC3 ( A3 ) genes encode cytidine deaminase proteins with potent antiviral and anti-retroelement activity. This locus is characterized by duplication, recombination, and deletion events that gave rise to the seven A3 s found in primates. These include three single deaminase domain A3s ( A3A , A3C , and A3H ) and four double deaminase domain A3s ( A3B , A3D , A3F , and A3G ). The most potent of the A3 proteins against HIV-1 is A3G. However, it is not clear if double deaminase domain A3s have a generalized functional advantage to restrict HIV-1. In order to test whether superior restriction factors could be created by genetically linking single A3 domains into synthetic double domains, we combined A3C and A3H single domains in novel combinations. We found that A3C/A3H double domains acquired enhanced antiviral activity that is at least as potent, if not better than, A3G. These synthetic double domain A3s have more efficiency of packaging into budding virions than their respective single domains, but this does not fully explain their gain of antiviral potency. The antiviral activity is conferred both by cytidine-deaminase dependent and independent mechanisms, with the latter correlating to an increase in RNA binding affinity. T cell lines expressing this A3C-A3H super restriction factor are able to control replicating HIV-1DVif infection to similar levels as A3G. Together, these data show that novel combinations of A3 domains are capable of gaining potent antiviral activity to levels similar to the most potent genome-encoded A3s, via a primarily non-catalytic mechanism.


Sign in / Sign up

Export Citation Format

Share Document