scholarly journals CD21 (Complement Receptor 2) Is the Receptor for Epstein-Barr Virus Entry into T Cells

2020 ◽  
Vol 94 (11) ◽  
Author(s):  
Nicholas A. Smith ◽  
Carrie B. Coleman ◽  
Benjamin E. Gewurz ◽  
Rosemary Rochford

ABSTRACT Epstein-Barr virus (EBV) is associated with a number of T-cell diseases, including some peripheral T-cell lymphomas, hemophagocytic lymphohistiocytosis, and chronic active EBV disease. The tropism of EBV for B cells and epithelial cell infection has been well characterized, but infection of T cells has been minimally explored. We have recently shown that the EBV type 2 (EBV-2) strain has the unique ability to infect mature T cells. Utilizing an ex vivo infection model, we sought to understand the viral glycoprotein and cellular receptor required for EBV-2 infection of T cells. Here, using a neutralizing-antibody assay, we found that viral gp350 and complement receptor 2 (CD21) are required for CD3+ T-cell infection. Using the HB5 anti-CD21 antibody clone but not the Bly-4 anti-CD21 antibody clone, we detected expression of CD21 on both CD4+ and CD8+ T cells, with the highest expression on naive CD4 and CD8+ T-cell subsets. Using CRISPR to knock out CD21, we demonstrated that CD21 is necessary for EBV entry into the Jurkat T-cell line. Together, these results indicate that EBV uses the same viral glycoprotein and cellular receptor for both T- and B-cell infection. IMPORTANCE Epstein-Barr virus (EBV) has a well-described tropism for B cells and epithelial cells. Recently, we described the ability of a second strain of EBV, EBV type 2, to infect mature peripheral T cells. Using a neutralizing antibody assay, we determined that EBV uses the viral glycoprotein gp350 and the cellular protein CD21 to gain entry into mature peripheral T cells. CRISPR-Cas9 deletion of CD21 on the Jurkat T-cell line confirmed that CD21 is required for EBV infection. This study has broad implications, as we have defined a function for CD21 on mature peripheral T cells, i.e., as a receptor for EBV. In addition, the requirement for gp350 for T-cell entry has implications for EBV vaccine studies currently targeting the gp350 glycoprotein to prevent EBV-associated diseases.

2020 ◽  
Vol 154 (Supplement_1) ◽  
pp. S81-S81
Author(s):  
J Lanceta ◽  
W Xue ◽  
M Hurford ◽  
H Wu

Abstract Casestudy Epstein-Barr virus (EBV)-associated peripheral T-cell lymphomas are a group of aggressive neoplasms with a geographic predilection for South America and Asia, but are very rare in Western populations. Results We report a case of a 74-year-old Caucasian female who presented with pancytopenia and B symptoms with EBV-IgG detected on admission. Past medical history included: ITP, chronic urticaria, and recently diagnosed myelodysplastic syndrome (MDS) on bone marrow biopsy one month prior to admission. Excisional biopsies of an enlarged right neck lymph node (repeated within 6 months) and right axillary lymph node five years ago were negative for a lymphoproliferative disorder at the time. Repeated bone marrow biopsy, performed during the current admission, confirmed the diagnosis of MDS, with scattered T-cells without aberrant immunophenotype. Despite aggressive treatment from multiple specialties, the patient deteriorated and expired four weeks later from complications of MDS. At autopsy, there was diffuse lymphadenopathy involving the mediastinum, axilla, pelvis and peripancreatic fat. Lymph node sections demonstrated nodal architecture effacement by diffuse, vaguely nodular lymphoid infiltrates. Histologically, the infiltrates were composed of medium to large lymphocytes with round to slight irregular nuclei, rare Reed-Sternberg-like multinucleated cells, clumped chromatin, and indistinct nucleoli. Individual cell necrosis was abundant with mitotic figures readily identifiable. Immunohistochemistry revealed CD2+ CD3+ neoplastic T-cells that co-express MUM1 and a subset of CD30, while negative for CD4, CD5, CD8, CD56, ALK1, and TDT. EBV-encoded RNA in-situ hybridization was focally positive. The final postmortem diagnosis was peripheral T-cell lymphoma, not otherwise specified (NOS), with focal EBV positivity. Conclusion Co-existence of a de-novo MDS and non-Hodgkin lymphoma without any prior chemotherapeutic exposure is a highly unusual finding, although MDS-like presentations can occur with EBV-associated lymphomas. Peripheral T-cell lymphoma, NOS is an aggressive lymphoma and EBV positivity has been found correlated with a poor prognosis. This case demonstrates how postmortem examination remains an important tool in clinical- pathological correlation and highlights the potential pathogenetic role EBV plays in MDS and T-cell lymphoma.


Blood ◽  
1998 ◽  
Vol 92 (5) ◽  
pp. 1549-1555 ◽  
Author(s):  
Cliona M. Rooney ◽  
Colton A. Smith ◽  
Catherine Y.C. Ng ◽  
Susan K. Loftin ◽  
John W. Sixbey ◽  
...  

Abstract Epstein-Barr virus (EBV) causes potentially lethal immunoblastic lymphoma in up to 25% of children receiving bone marrow transplants from unrelated or HLA-mismatched donors. Because this complication appears to stem from a deficiency of EBV-specific cytotoxic T cells, we assessed the safety and efficacy of donor-derived polyclonal (CD4+ and CD8+) T-cell lines as immunoprophylaxis and treatment for EBV-related lymphoma. Thirty-nine patients considered to be at high risk for EBV-induced lymphoma each received 2 to 4 intravenous infusions of donor-derived EBV-specific T lymphocytes, after they had received T-cell–depleted bone marrow from HLA-matched unrelated donors (n = 33) or mismatched family members (n = 6). The immunologic effects of this therapy were monitored during and after the infusions. Infused cells were identified by detection of the neo marker gene. EBV-specific T cells bearing theneo marker were identified in all but 1 of the patients. Serial analysis of DNA detected the marker gene for as long as 18 weeks in unmanipulated peripheral blood mononuclear cells and for as long as 38 months in regenerated lines of EBV-specific cytotoxic T cells. Six patients (15.5%) had greatly increased amounts of EBV-DNA on study entry (>2,000 genome copies/106 mononuclear cells), indicating uncontrolled EBV replication, a complication that has had a high correlation with subsequent development of overt lymphoma. All of these patients showed 2 to 4 log decreases in viral DNA levels within 2 to 3 weeks after infusion and none developed lymphoma, confirming the antiviral activity of the donor-derived cells. There were no toxic effects that could be attributed to prophylactic T-cell therapy. Two additional patients who did not receive prophylaxis and developed overt immunoblastic lymphoma responded fully to T-cell infusion. Polyclonal donor-derived T-cell lines specific for EBV proteins can thus be used safely to prevent EBV-related immunoblastic lymphoma after allogeneic marrow transplantation and may also be effective in the treatment of established disease. © 1998 by The American Society of Hematology.


1983 ◽  
Vol 157 (1) ◽  
pp. 173-188 ◽  
Author(s):  
F Hasler ◽  
H G Bluestein ◽  
N J Zvaifler ◽  
L B Epstein

T cells of patients with rheumatoid arthritis (RA) do not control the rate of B lymphoblast transformation induced by Epstein-Barr virus (EBV) as efficiently as T cells from healthy individuals; thus, lymphoblast cell lines are established more readily in RA lymphocytes in vitro after EBV infection. In the present experiments, we have asked whether this T cell regulation can be reproduced by lymphocytes. We found that normal T cells, activated in allogeneic or autologous mixed leukocyte reactions (MLR), produce lymphokines that inhibit in vitro EBV-induced B cell proliferation. Allogeneic MLR supernatants inhibited EBV-induced DNA synthesis 62 +/- 4% (mean +/- SE) at 10 d post-infection, whereas autologous MLR supernatants suppressed it 50 +/- 3%. RA T cell supernatants produced in an allogeneic MLR suppressed as well as normal T cell supernatants (64 +/- 5% inhibition). In contrast, supernatants from RA autologous MLR had little inhibitory activity. EBV-induced DNA synthesis at 10 d was reduced only 8 +/- 3%, compared with the 50 +/- 3% suppressive activity of normal autologous MLR supernatants. The magnitude of the proliferative responses in the autologous MLR regenerating the lymphokines was similar in the normal and RA populations. After depletion of adherent cells from the RA auto-MLR stimulators, supernatant inhibitory activities increased to normal levels (from 11 +/- 6 [SE] to 52 +/- 6% [SE]). The inhibitory factor involved in the regulation of in vitro EBV infection is a protein with a molecular weight of approximately 50,000. Its activity is eliminated by hearing at 56 degrees C and by exposure to acid at pH 2. The inhibitory activity is blocked by mixing the MLR supernatants with a polyvalent antisera or monoclonal antibodies specific for human gamma interferon. Gamma interferon produced by activating T cells in allo- or auto-MLR can reproduce T cell-mediated regulation of EBV-induced B cell proliferation, and the failure of RA auto-MLR to generate that lymphokine parallels the defective T cell regulation of EBV-induced B cell proliferation characteristic of RA lymphoid cells.


Blood ◽  
1998 ◽  
Vol 92 (5) ◽  
pp. 1549-1555 ◽  
Author(s):  
Cliona M. Rooney ◽  
Colton A. Smith ◽  
Catherine Y.C. Ng ◽  
Susan K. Loftin ◽  
John W. Sixbey ◽  
...  

Epstein-Barr virus (EBV) causes potentially lethal immunoblastic lymphoma in up to 25% of children receiving bone marrow transplants from unrelated or HLA-mismatched donors. Because this complication appears to stem from a deficiency of EBV-specific cytotoxic T cells, we assessed the safety and efficacy of donor-derived polyclonal (CD4+ and CD8+) T-cell lines as immunoprophylaxis and treatment for EBV-related lymphoma. Thirty-nine patients considered to be at high risk for EBV-induced lymphoma each received 2 to 4 intravenous infusions of donor-derived EBV-specific T lymphocytes, after they had received T-cell–depleted bone marrow from HLA-matched unrelated donors (n = 33) or mismatched family members (n = 6). The immunologic effects of this therapy were monitored during and after the infusions. Infused cells were identified by detection of the neo marker gene. EBV-specific T cells bearing theneo marker were identified in all but 1 of the patients. Serial analysis of DNA detected the marker gene for as long as 18 weeks in unmanipulated peripheral blood mononuclear cells and for as long as 38 months in regenerated lines of EBV-specific cytotoxic T cells. Six patients (15.5%) had greatly increased amounts of EBV-DNA on study entry (>2,000 genome copies/106 mononuclear cells), indicating uncontrolled EBV replication, a complication that has had a high correlation with subsequent development of overt lymphoma. All of these patients showed 2 to 4 log decreases in viral DNA levels within 2 to 3 weeks after infusion and none developed lymphoma, confirming the antiviral activity of the donor-derived cells. There were no toxic effects that could be attributed to prophylactic T-cell therapy. Two additional patients who did not receive prophylaxis and developed overt immunoblastic lymphoma responded fully to T-cell infusion. Polyclonal donor-derived T-cell lines specific for EBV proteins can thus be used safely to prevent EBV-related immunoblastic lymphoma after allogeneic marrow transplantation and may also be effective in the treatment of established disease. © 1998 by The American Society of Hematology.


Blood ◽  
2000 ◽  
Vol 96 (8) ◽  
pp. 2814-2821 ◽  
Author(s):  
Natalie A. Marshall ◽  
John Greg Howe ◽  
Richard Formica ◽  
Diane Krause ◽  
John E. Wagner ◽  
...  

Epstein-Barr virus (EBV)–specific CD8 T lymphocytes are present at remarkably high frequencies in healthy EBV+individuals and provide protection from EBV-associated lymphoproliferative diseases. Allogeneic peripheral blood stem cell transplantation (allo-PBSCT) is a commonly used therapy in which T-cell surveillance for EBV is temporarily disrupted. Herein, human leukocyte antigen (HLA) class I tetramers were used to investigate the reestablishment of the EBV-specific CD8 T-cell repertoire in patients following allo-PBSCT. CD8+ T cells specific for lytic and latent cycle–derived EBV peptides rapidly repopulate the periphery of matched sibling allo-PBSCT patients. The relative frequencies of T cells specific for different EBV peptides in transplantation recipients closely reflect those of their respective donors. Investigation of patients at monthly intervals following unmanipulated allo-PBSCT demonstrated that the frequency of EBV-specific T cells correlates with the number of EBV genome copies in the peripheral blood and that expansion of EBV-specific T-cell populations occurs even in the setting of immunosuppressive therapy. In contrast, patients undergoing T-cell–depleted or unrelated cord blood transplantation have undetectable EBV-specific T cells, even in the presence of Epstein-Barr viremia. The protective shield provided by EBV-specific CD8 T cells is rapidly established following unmanipulated matched sibling allo-PBSCT and demonstrates that HLA class I tetramers complexed with viral peptides can provide direct and rapid assessment of pathogen-specific immunity in this and other vulnerable patient populations.


Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3302-3309 ◽  
Author(s):  
Qi Sun ◽  
Robert L. Burton ◽  
Kenneth G. Lucas

Abstract Ex vivo expanded Epstein-Barr virus (EBV)–specific T cells have been successfully applied clinically for adoptive immunotherapy. However, the role of CD4+ T cells in the therapeutic T-cell culture has not been established for the reconstitution of EBV-specific immunity. We isolated and characterized CD4+ T-cell lines from the ex vivo T-cell cultures. Monoclonal line PD-F4 and oligoclonal lines ND-R4 and TD-B4 were CD3+CD4+CD8−. Cytolytic tests with targets of mismatched major histocompatibility complex (MHC) and anti-MHC antibodies confirmed that the cytotoxicity of these CD4+ cells was restricted by MHC class II. Single cells of ND-R4 expressed interferon-γ (IFN-γ, or interleukin 4 (IL-4), but rarely coexpressed these 2 cytokines. In contrast, PD-F4 coexpressed IFN-γ, IL-2, and IL-4. Kinetic studies with PD-F4 showed that expression of the 3 cytokines plateaued 5 hours upon stimulation and was then drastically reduced, with a pattern consistent with independent modulation and differential off-cycle signal requirements. The cytotoxicity of these CD4+ cells was largely resistant to brefeldin A, an inhibitor for cytolytic pathways by Fas-ligand family molecules. Although sensitive to concanamycin A and ethyleneglycotetraacetic acid, which inhibit cytotoxicity by granule exocytosis, the CD4+ cytotoxic T lymphocytes (CTLs) did not express perforin, suggesting a cytotoxic mechanism independent of perforin although involving exocytosis. Flow cytometric analysis showed that the CD4+ CTLs expressed granulysin, a recently identified cytolytic molecule associated with exocytotic cytolytic granules. These data suggested that CD4+ T cells in the therapeutic B-lymphoblastoid cell lines–primed T-cell culture are diverse in producing TH1 and TH2 cytokines, and may exert specific cytotoxicity via exocytosis of granulysin.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1334-1343 ◽  
Author(s):  
Sumita Bhaduri-McIntosh ◽  
Marisa J. Rotenberg ◽  
Benjamin Gardner ◽  
Marie Robert ◽  
George Miller

AbstractAnswers to questions about frequency and repertoire of immune cells, relative contributions made by different types of immune cells toward the total Epstein-Barr virus (EBV)–directed response and the variation of such responses in healthy persons have been elusive because of disparities in assays, antigen presenting cells, and antigenic sources used in previous experiments. In this study, we addressed these questions using an assay that allowed direct comparison of responses generated by different types of cells of the immune system. This short-term (20-hour) ex vivo assay measured interferon-γ production by blood cells in response to autologous EBV-transformed lymphoblastoid cell lines (LCLs). Our experiments defined the variation in responses among persons and clearly distinguished 10 healthy EBV-immune from 10 healthy EBV-naive persons. In EBV-immune persons, 33% of responding cells were CD4+, 43.3% were CD8+, and 12.9% were γ-δ T cells. LCL-reactive CD8+ T cells were only 1.7-fold more frequent than similarly reactive CD4+T cells. Responses by γ-δ T cells were 6-fold higher in seropositive than in seronegative persons. Our findings emphasize the importance of CD4+ and γ-δ T-cell responses and have implications for immunotherapy and for identifying defects in T-cell populations that might predispose to development of EBV-associated lymphomas.


Sign in / Sign up

Export Citation Format

Share Document