scholarly journals Genotype-Specific Neutralization and Protection by Antibodies against Dengue Virus Type 3

2010 ◽  
Vol 84 (20) ◽  
pp. 10630-10643 ◽  
Author(s):  
James D. Brien ◽  
S. Kyle Austin ◽  
Soila Sukupolvi-Petty ◽  
Katie M. O'Brien ◽  
Syd Johnson ◽  
...  

ABSTRACT Dengue viruses (DENV) comprise a family of related positive-strand RNA viruses that infect up to 100 million people annually. Currently, there is no approved vaccine or therapy to prevent infection or diminish disease severity. Protection against DENV is associated with the development of neutralizing antibodies that recognize the viral envelope (E) protein. Here, with the goal of identifying monoclonal antibodies (MAbs) that can function as postexposure therapy, we generated a panel of 82 new MAbs against DENV-3, including 24 highly neutralizing MAbs. Using yeast surface display, we localized the epitopes of the most strongly neutralizing MAbs to the lateral ridge of domain III (DIII) of the DENV type 3 (DENV-3) E protein. While several MAbs functioned prophylactically to prevent DENV-3-induced lethality in a stringent intracranial-challenge model of mice, only three MAbs exhibited therapeutic activity against a homologous strain when administered 2 days after infection. Remarkably, no MAb in our panel protected prophylactically against challenge by a strain from a heterologous DENV-3 genotype. Consistent with this, no single MAb neutralized efficiently the nine different DENV-3 strains used in this study, likely because of the sequence variation in DIII within and between genotypes. Our studies suggest that strain diversity may limit the efficacy of MAb therapy or tetravalent vaccines against DENV, as neutralization potency generally correlated with a narrowed genotype specificity.

2007 ◽  
Vol 81 (23) ◽  
pp. 12816-12826 ◽  
Author(s):  
Soila Sukupolvi-Petty ◽  
S. Kyle Austin ◽  
Whitney E. Purtha ◽  
Theodore Oliphant ◽  
Grant E. Nybakken ◽  
...  

ABSTRACT Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals. Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials.


2010 ◽  
Vol 84 (18) ◽  
pp. 9227-9239 ◽  
Author(s):  
Soila Sukupolvi-Petty ◽  
S. Kyle Austin ◽  
Michael Engle ◽  
James D. Brien ◽  
Kimberly A. Dowd ◽  
...  

ABSTRACT Dengue virus (DENV) is the most prevalent insect-transmitted viral disease in humans globally, and currently no specific therapy or vaccine is available. Protection against DENV and other related flaviviruses is associated with the development of antibodies against the viral envelope (E) protein. Although prior studies have characterized the neutralizing activity of monoclonal antibodies (MAbs) against DENV type 2 (DENV-2), none have compared simultaneously the inhibitory activity against a genetically diverse range of strains in vitro, the protective capacity in animals, and the localization of epitopes. Here, with the goal of identifying MAbs that can serve as postexposure therapy, we investigated in detail the functional activity of a large panel of new anti-DENV-2 mouse MAbs. Binding sites were mapped by yeast surface display and neutralization escape, cell culture inhibition assays were performed with homologous and heterologous strains, and prophylactic and therapeutic activity was evaluated with two mouse models. Protective MAbs localized to epitopes on the lateral ridge of domain I (DI), the dimer interface, lateral ridge, and fusion loop of DII, and the lateral ridge, C-C′ loop, and A strand of DIII. Several MAbs inefficiently inhibited at least one DENV-2 strain of a distinct genotype, suggesting that recognition of neutralizing epitopes varies with strain diversity. Moreover, antibody potency generally correlated with a narrowed genotype and serotype specificity. Five MAbs functioned efficiently as postexposure therapy when administered as a single dose, even 3 days after intracranial infection of BALB/c mice. Overall, these studies define the structural and functional complexity of antibodies against DENV-2 with protective potential.


2013 ◽  
Vol 94 (10) ◽  
pp. 2191-2201 ◽  
Author(s):  
Xiao-Quan Li ◽  
Li-Wen Qiu ◽  
Yue Chen ◽  
Kun Wen ◽  
Jian-Piao Cai ◽  
...  

Dengue virus (DENV) is a mosquito-borne virus that causes severe health problems. An effective tetravalent dengue vaccine candidate that can provide life-long protection simultaneously against all four DENV serotypes is highly anticipated. A better understanding of the antibody response to DENV envelope protein domain III (EDIII) may offer insights into vaccine development. Here, we identified 25 DENV cross-reactive mAbs from immunization with Pichia pastoris-expressed EDIII of a single or all four serotype(s) using a prime–boost protocol, and through pepscan analysis found that 60 % of them (15/25) specifically recognized the same highly conserved linear epitope aa 309–320 of EDIII. All 15 complex-reactive mAbs exhibited significant cross-reactivity with recombinant EDIII from all DENV serotypes and also with C6/36 cells infected with DENV-1, -2, -3 and -4. However, neutralization assays indicated that the majority of these 15 mAbs were either moderately or weakly neutralizing. Through further epitope mapping by yeast surface display, two residues in the AB loop, Q316 and H317, were discovered to be critical. Three-dimensional modelling analysis suggests that this epitope is surface exposed on EDIII but less accessible on the surface of the E protein dimer and trimer, especially on the surface of the mature virion. It is concluded that EDIII as an immunogen may elicit cross-reactive mAbs toward an epitope that is not exposed on the virion surface, therefore contributing inefficiently to the mAbs neutralization potency. Therefore, the prime–boost strategy of EDIII from a single serotype or four serotypes mainly elicited a poorly neutralizing, cross-reactive antibody response to the conserved AB loop of EDIII.


2006 ◽  
Vol 80 (24) ◽  
pp. 12149-12159 ◽  
Author(s):  
Theodore Oliphant ◽  
Grant E. Nybakken ◽  
Michael Engle ◽  
Qing Xu ◽  
Christopher A. Nelson ◽  
...  

ABSTRACT Previous studies have demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral surface of domain III (DIII) of the West Nile virus (WNV) envelope (E) strongly protect against infection in animals. Herein, we observed significantly less efficient neutralization by 89 MAbs that recognized domain I (DI) or II (DII) of WNV E protein. Moreover, in cells expressing Fc γ receptors, many of the DI- and DII-specific MAbs enhanced infection over a broad range of concentrations. Using yeast surface display of E protein variants, we identified 25 E protein residues to be critical for recognition by DI- or DII-specific neutralizing MAbs. These residues cluster into six novel and one previously characterized epitope located on the lateral ridge of DI, the linker region between DI and DIII, the hinge interface between DI and DII, and the lateral ridge, central interface, dimer interface, and fusion loop of DII. Approximately 45% of DI-DII-specific MAbs showed reduced binding with mutations in the highly conserved fusion loop in DII: 85% of these (34 of 40) cross-reacted with the distantly related dengue virus (DENV). In contrast, MAbs that bound the other neutralizing epitopes in DI and DII showed no apparent cross-reactivity with DENV E protein. Surprisingly, several of the neutralizing epitopes were located in solvent-inaccessible positions in the context of the available pseudoatomic model of WNV. Nonetheless, DI and DII MAbs protect against WNV infection in mice, albeit with lower efficiency than DIII-specific neutralizing MAbs.


2021 ◽  
Author(s):  
Jimmy D Gollihar ◽  
Jason S McLellan ◽  
Daniel R Boutz ◽  
Jule Goike ◽  
Andrew Horton ◽  
...  

The ongoing evolution of SARS-CoV-2 into more easily transmissible and infectious variants has sparked concern over the continued effectiveness of existing therapeutic antibodies and vaccines. Hence, together with increased genomic surveillance, methods to rapidly develop and assess effective interventions are critically needed. Here we report the discovery of SARS-CoV-2 neutralizing antibodies isolated from COVID-19 patients using a high-throughput platform. Antibodies were identified from unpaired donor B-cell and serum repertoires using yeast surface display, proteomics, and public light chain screening. Cryo-EM and functional characterization of the antibodies identified N3-1, an antibody that binds avidly (Kd,app = 68 pM) to the receptor binding domain (RBD) of the spike protein and robustly neutralizes the virus in vitro. This antibody likely binds all three RBDs of the trimeric spike protein with a single IgG. Importantly, N3-1 equivalently binds spike proteins from emerging SARS-CoV-2 variants of concern, neutralizes UK variant B.1.1.7, and binds SARS-CoV spike with nanomolar affinity. Taken together, the strategies described herein will prove broadly applicable in interrogating adaptive immunity and developing rapid response biological countermeasures to emerging pathogens.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Stefan W. Metz ◽  
Ashlie Thomas ◽  
Alex Brackbill ◽  
John Forsberg ◽  
Michael J. Miley ◽  
...  

Abstract The current leading Zika vaccine candidates in clinical testing are based on live or killed virus platforms, which have safety issues, especially in pregnant women. Zika subunit vaccines, however, have shown poor performance in preclinical studies, most likely because the antigens tested do not display critical quaternary structure epitopes present on Zika E protein homodimers that cover the surface of the virus. Here, we produce stable recombinant E protein homodimers that are recognized by strongly neutralizing Zika specific monoclonal antibodies. In mice, the dimeric antigen stimulate strongly neutralizing antibodies that target epitopes that are similar to epitopes recognized by human antibodies following natural Zika virus infection. The monomer antigen stimulates low levels of E-domain III targeting neutralizing antibodies. In a Zika challenge model, only E dimer antigen stimulates protective antibodies, not the monomer. These results highlight the importance of mimicking the highly structured flavivirus surface when designing subunit vaccines.


2020 ◽  
Vol 117 (45) ◽  
pp. 28046-28055 ◽  
Author(s):  
Anum Glasgow ◽  
Jeff Glasgow ◽  
Daniel Limonta ◽  
Paige Solomon ◽  
Irene Lui ◽  
...  

An essential mechanism for severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection begins with the viral spike protein binding to the human receptor protein angiotensin-converting enzyme II (ACE2). Here, we describe a stepwise engineering approach to generate a set of affinity optimized, enzymatically inactivated ACE2 variants that potently block SARS-CoV-2 infection of cells. These optimized receptor traps tightly bind the receptor binding domain (RBD) of the viral spike protein and prevent entry into host cells. We first computationally designed the ACE2–RBD interface using a two-stage flexible protein backbone design process that improved affinity for the RBD by up to 12-fold. These designed receptor variants were affinity matured an additional 14-fold by random mutagenesis and selection using yeast surface display. The highest-affinity variant contained seven amino acid changes and bound to the RBD 170-fold more tightly than wild-type ACE2. With the addition of the natural ACE2 collectrin domain and fusion to a human immunoglobulin crystallizable fragment (Fc) domain for increased stabilization and avidity, the most optimal ACE2 receptor traps neutralized SARS-CoV-2–pseudotyped lentivirus and authentic SARS-CoV-2 virus with half-maximal inhibitory concentrations (IC50s) in the 10- to 100-ng/mL range. Engineered ACE2 receptor traps offer a promising route to fighting infections by SARS-CoV-2 and other ACE2-using coronaviruses, with the key advantage that viral resistance would also likely impair viral entry. Moreover, such traps can be predesigned for viruses with known entry receptors for faster therapeutic response without the need for neutralizing antibodies isolated from convalescent patients.


2021 ◽  
Vol 218 (5) ◽  
Author(s):  
Marianna Agudelo ◽  
Martin Palus ◽  
Jennifer R. Keeffe ◽  
Filippo Bianchini ◽  
Pavel Svoboda ◽  
...  

Tick-borne encephalitis virus (TBEV) is an emerging human pathogen that causes potentially fatal disease with no specific treatment. Mouse monoclonal antibodies are protective against TBEV, but little is known about the human antibody response to infection. Here, we report on the human neutralizing antibody response to TBEV in a cohort of infected and vaccinated individuals. Expanded clones of memory B cells expressed closely related anti-envelope domain III (EDIII) antibodies in both groups of volunteers. However, the most potent neutralizing antibodies, with IC50s below 1 ng/ml, were found only in individuals who recovered from natural infection. These antibodies also neutralized other tick-borne flaviviruses, including Langat, louping ill, Omsk hemorrhagic fever, Kyasanur forest disease, and Powassan viruses. Structural analysis revealed a conserved epitope near the lateral ridge of EDIII adjoining the EDI–EDIII hinge region. Prophylactic or early therapeutic antibody administration was effective at low doses in mice that were lethally infected with TBEV.


2021 ◽  
Author(s):  
Benjamin Nikola Bell ◽  
Abigail E. Powell ◽  
Carlos Rodriguez ◽  
Jennifer R Cochran ◽  
Peter S. Kim

Infection with SARS-CoV-2 elicits robust antibody responses in some patients, with a majority of the response directed at the receptor binding domain (RBD) of the spike surface glycoprotein. Remarkably, many patient-derived antibodies that potently inhibit viral infection harbor few to no mutations from the germline, suggesting that naive antibody libraries are a viable means for discovery of novel SARS-CoV-2 neutralizing antibodies. Here, we used a yeast surface-display library of human naive antibodies to isolate and characterize three novel neutralizing antibodies that target the RBD: one that blocks interaction with angiotensin-converting enzyme 2 (ACE2), the human receptor for SARS-CoV-2, and two that target other epitopes on the RBD. These three antibodies neutralized SARS-CoV-2 spike-pseudotyped lentivirus with IC50 values as low as 60 ng/mL in vitro. Using a biolayer interferometry-based binding competition assay, we determined that these antibodies have distinct but overlapping epitopes with antibodies elicited during natural COVID-19 infection. Taken together, these analyses highlight how in vitro selection of naive antibodies can mimic the humoral response in vivo, yielding neutralizing antibodies and various epitopes that can be effectively targeted on the SARS-CoV-2 RBD.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jan P. Bogen ◽  
Stefania C. Carrara ◽  
David Fiebig ◽  
Julius Grzeschik ◽  
Björn Hock ◽  
...  

Bispecific (BsAb) and biparatopic (BpAb) antibodies emerged as promising formats for therapeutic biologics exhibiting tailor-made functional properties. Over recent years, chicken-derived antibodies have gained traction for diagnostic and therapeutic applications due to their broad epitope coverage and convenience of library generation. Here we report the first generation of a biparatopic common light chain (cLC) chicken-derived antibody by an epitope binning-based screening approach using yeast surface display. The resulting monospecific antibodies target conformational epitopes on domain II or III of the epidermal growth factor receptor (EGFR) with lower double- or single-digit nanomolar affinities, respectively. Furthermore, the domain III targeting variant was shown to interfere with epidermal growth factor (EGF) binding. Utilizing the Knob-into-Hole technology (KiH), a biparatopic antibody with subnanomolar affinity was generated that facilitates clustering of soluble and cell-bound EGFR and displayed enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) compared to the parental antibodies. This strategy for generating cLC-based biparatopic antibodies from immunized chickens may pave the way for their further development in therapeutic settings.


Sign in / Sign up

Export Citation Format

Share Document