scholarly journals CCR5 and CXCR3 Are Dispensable for Liver Infiltration, but CCR5 Protects against Virus-Induced T-Cell-Mediated Hepatic Steatosis

2007 ◽  
Vol 81 (18) ◽  
pp. 10101-10112 ◽  
Author(s):  
P. J. Holst ◽  
C. Orskov ◽  
K. Qvortrup ◽  
J. P. Christensen ◽  
A. R. Thomsen

ABSTRACT CCR5 and CXCR3 are important molecules in regulating the migration of activated lymphocytes. Thus, the majority of tissue-infiltrating T cells found in the context of autoimmune conditions and viral infections express CCR5 and CXCR3, and the principal chemokine ligands are expressed within inflamed tissues. Accordingly, intervention studies have pointed to nonredundant roles of these receptors in models of allograft rejection, viral infection, and autoimmunity. In spite of this, considerable controversy exists, with many studies failing to support a role for CCR5 or CXCR3 in disease pathogenesis. One possible explanation is that different chemokine receptors may take over in the absence of any individual receptor, thus rendering individual receptors redundant. We have attempted to address this issue by analyzing CCR5−/−, CXCR3−/−, and CCR5/CXCR3−/− mice with regard to virus-induced liver inflammation, generation and recruitment of effector cells, virus control, and immunopathology. Our results indicate that CCR5 and CXCR3 are largely dispensable for tissue infiltration and virus control. In contrast, the T-cell response is accelerated in CCR5−/− and CCR5/CXCR3−/− mice and the absence of CCR5 is associated with the induction of CD8+ T-cell-mediated immunopathology consisting of marked hepatic microvesicular steatosis.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amanda W. K. AuYeung ◽  
Robert C. Mould ◽  
Ashley A. Stegelmeier ◽  
Jacob P. van Vloten ◽  
Khalil Karimi ◽  
...  

AbstractVaccination can prevent viral infections via virus-specific T cells, among other mechanisms. A goal of oncolytic virotherapy is replication of oncolytic viruses (OVs) in tumors, so pre-existing T cell immunity against an OV-encoded transgene would seem counterproductive. We developed a treatment for melanomas by pre-vaccinating against an oncolytic vesicular stomatitis virus (VSV)-encoded tumor antigen. Surprisingly, when the VSV-vectored booster vaccine was administered at the peak of the primary effector T cell response, oncolysis was not abrogated. We sought to determine how oncolysis was retained during a robust T cell response against the VSV-encoded transgene product. A murine melanoma model was used to identify two mechanisms that enable this phenomenon. First, tumor-infiltrating T cells had reduced cytopathic potential due to immunosuppression. Second, virus-induced lymphopenia acutely removed virus-specific T cells from tumors. These mechanisms provide a window of opportunity for replication of oncolytic VSV and rationale for a paradigm change in oncolytic virotherapy, whereby immune responses could be intentionally induced against a VSV-encoded melanoma-associated antigen to improve safety without abrogating oncolysis.


2005 ◽  
Vol 79 (15) ◽  
pp. 9419-9429 ◽  
Author(s):  
Nicole E. Miller ◽  
Jennifer R. Bonczyk ◽  
Yumi Nakayama ◽  
M. Suresh

ABSTRACT Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at ∼6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kingsley Gideon Kumashie ◽  
Marcin Cebula ◽  
Claudia Hagedorn ◽  
Florian Kreppel ◽  
Marina C. Pils ◽  
...  

Chronic hepatotropic viral infections are characterized by exhausted CD8+ T cells in the presence of cognate antigen in the liver. The impairment of T cell response limits the control of chronic hepatotropic viruses. Immune-modulatory strategies are attractive options to re-invigorate exhausted T cells. However, in hepatotropic viral infections, the knowledge about immune-modulatory effects on the in-situ regulation of exhausted intrahepatic CD8+ T cells is limited. In this study, we elucidated the functional heterogeneity in the pool of exhausted CD8+ T cells in the liver of mice expressing the model antigen Ova in a fraction of hepatocytes. We found a subpopulation of intrahepatic CXCR5+ Ova-specific CD8+ T cells, which are profoundly cytotoxic, exhibiting efficient metabolic functions as well as improved memory recall and self-maintenance. The intrahepatic Ova-specific CXCR5+ CD8+ T cells are possibly tissue resident cells, which may rely largely on OXPHOS and glycolysis to fuel their cellular processes. Importantly, host conditioning with CpG oligonucleotide reinvigorates and promotes exhausted T cell expansion, facilitating complete antigen eradication. The CpG oligonucleotide-mediated reinvigoration may support resident memory T cell formation and the maintenance of CXCR5+ Ova-specific CD8+ T cells in the liver. These findings suggest that CpG oligodinucleotide may preferentially target CXCR5+ CD8+ T cells for expansion to facilitate the revival of exhausted T cells. Thus, therapeutic strategies aiming to expand CXCR5+ CD8+ T cells might provide a novel approach against chronic liver infection.


2013 ◽  
Vol 81 (11) ◽  
pp. 4171-4181 ◽  
Author(s):  
Laura A. Cooney ◽  
Megha Gupta ◽  
Sunil Thomas ◽  
Sebastian Mikolajczak ◽  
Kimberly Y. Choi ◽  
...  

ABSTRACTVaccination with a single dose of genetically attenuated malaria parasites can induce sterile protection against sporozoite challenge in the rodentPlasmodium yoeliimodel. Protection is dependent on CD8+T cells, involves perforin and gamma interferon (IFN-γ), and is correlated with the expansion of effector memory CD8+T cells in the liver. Here, we have further characterized vaccine-induced changes in the CD8+T cell phenotype and demonstrated significant upregulation of CD11c on CD3+CD8b+T cells in the liver, spleen, and peripheral blood. CD11c+CD8+T cells are predominantly CD11ahiCD44hiCD62L−, indicative of antigen-experienced effector cells. Followingin vitrorestimulation with malaria-infected hepatocytes, CD11c+CD8+T cells expressed inflammatory cytokines and cytotoxicity markers, including IFN-γ, tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2), perforin, and CD107a. CD11c−CD8+T cells, on the other hand, expressed negligible amounts of all inflammatory cytokines and cytotoxicity markers tested, indicating that CD11c marks multifunctional effector CD8+T cells. Coculture of CD11c+, but not CD11c−, CD8+T cells with sporozoite-infected primary hepatocytes significantly inhibited liver-stage parasite development. Tetramer staining for the immunodominant circumsporozoite protein (CSP)-specific CD8+T cell epitope demonstrated that approximately two-thirds of CSP-specific cells expressed CD11c at the peak of the CD11c+CD8+T cell response, but CD11c expression was lost as the CD8+T cells entered the memory phase. Further analyses showed that CD11c+CD8+T cells are primarily KLRG1+CD127−terminal effectors, whereas all KLRG1−CD127+memory precursor effector cells are CD11c−CD8+T cells. Together, these results suggest that CD11c marks a subset of highly inflammatory, short-lived, antigen-specific effector cells, which may play an important role in eliminating infected hepatocytes.


2005 ◽  
Vol 202 (5) ◽  
pp. 673-685 ◽  
Author(s):  
Andrew W. Sylwester ◽  
Bridget L. Mitchell ◽  
John B. Edgar ◽  
Cara Taormina ◽  
Christian Pelte ◽  
...  

Human cytomegalovirus (HCMV) infections of immunocompetent hosts are characterized by a dynamic, life-long interaction in which host immune responses, particularly of T cells, restrain viral replication and prevent disease but do not eliminate the virus or preclude transmission. Because HCMV is among the largest and most complex of known viruses, the T cell resources committed to maintaining this balance have never been characterized completely. Here, using cytokine flow cytometry and 13,687 overlapping 15mer peptides comprising 213 HCMV open reading frames (ORFs), we found that 151 HCMV ORFs were immunogenic for CD4+ and/or CD8+ T cells, and that ORF immunogenicity was influenced only modestly by ORF expression kinetics and function. We further documented that total HCMV-specific T cell responses in seropositive subjects were enormous, comprising on average ∼10% of both the CD4+ and CD8+ memory compartments in blood, whereas cross-reactive recognition of HCMV proteins in seronegative individuals was limited to CD8+ T cells and was rare. These data provide the first glimpse of the total human T cell response to a complex infectious agent and will provide insight into the rules governing immunodominance and cross-reactivity in complex viral infections of humans.


2007 ◽  
Vol 204 (8) ◽  
pp. 1787-1801 ◽  
Author(s):  
Jae-Ho Cho ◽  
Onur Boyman ◽  
Hee-Ok Kim ◽  
Bumsuk Hahm ◽  
Mark P. Rubinstein ◽  
...  

In conditions of T lymphopenia, interleukin (IL) 7 levels rise and, via T cell receptor for antigen–self–major histocompatibility complex (MHC) interaction, induce residual naive T cells to proliferate. This pattern of lymphopenia-induced “homeostatic” proliferation is typically quite slow and causes a gradual increase in total T cell numbers and differentiation into cells with features of memory cells. In contrast, we describe a novel form of homeostatic proliferation that occurs when naive T cells encounter raised levels of IL-2 and IL-15 in vivo. In this situation, CD8+ T cells undergo massive expansion and rapid differentiation into effector cells, thus closely resembling the T cell response to foreign antigens. However, the responses induced by IL-2/IL-15 are not seen in MHC-deficient hosts, implying that the responses are driven by self-ligands. Hence, homeostatic proliferation of naive T cells can be either slow or fast, with the quality of the response to self being dictated by the particular cytokine (IL-7 vs. IL-2/IL-15) concerned. The relevance of the data to the gradual transition of naive T cells into memory-phenotype (MP) cells with age is discussed.


Author(s):  
Moritz Anft ◽  
Krystallenia Paniskaki ◽  
Arturo Blazquez-Navarro ◽  
Adrian Doevelaar ◽  
Felix S. Seibert ◽  
...  

AbstractBackgroundThe efficacy of the humoral and cellular immunity determines the outcome of viral infections. An appropriate immune response mediates protection, whereas an overwhelming immune response has been associated with immune-mediated pathogenesis in viral infections. The current study explored the general and SARS-CoV-2 specific cellular and humoral immune status in patients with different COVID-19 severities.MethodsIn this prospective study, we included 53 patients with moderate, severe, and critical COVID-19 manifestations comparing their quantitative, phenotypic, and functional characteristics of circulating immune cells, SARS-CoV-2 antigen specific T-cells, and humoral immunity.ResultsSignificantly diminished frequencies of CD8+T-cells, CD4+ and CD8+T-cell subsets with activated differentiated memory/effector phenotype and migratory capacity were found in circulation in patients with severe and/or critical COVID-19 as compared to patients with moderate disease. Importantly, the improvement of the clinical courses from severe to moderate was accompanied by an improvement in the T-cell subset alterations. Furthermore, we surprisingly observed a detectable SARS-CoV-2-reactive T-cell response in all three groups after stimulation with SARS-CoV-2 S-protein overlapping peptide pool already at the first visit. Of note, patients with a critical COVID-19 demonstrated a stronger response of SARS-CoV-2-reactive T-cells producing Th1 associated inflammatory cytokines. Furthermore, clear correlation between antibody titers and SARS-CoV-2-reactive CD4+ frequencies underscore the role of specific immunity in disease progression.ConclusionOur data demonstrate that depletion of activated memory phenotype circulating T-cells and a strong SARS-CoV-2-specific cellular and humoral immunity are associated with COVID-19 disease severity. This counter-intuitive finding may have important implications for diagnostic, therapeutic and prophylactic COVID-19 management.


2019 ◽  
Vol 94 (5) ◽  
Author(s):  
Pedro Alves-Peixoto ◽  
Maria Férez ◽  
Cory J. Knudson ◽  
Carolina R. Melo-Silva ◽  
Colby Stotesbury ◽  
...  

ABSTRACT It is well established that chronic viral infections can cause immune suppression, resulting in increased susceptibility to other infectious diseases. However, the effects of chronic viral infection on T-cell responses and vaccination against highly pathogenic viruses are not well understood. We have recently shown that C57BL/6 (B6) mice lose their natural resistance to wild-type (WT) ectromelia virus (ECTV) when chronically infected with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13). Here we compared the T-cell response to ECTV in previously immunologically naive mice that were chronically infected with CL13 or that were convalescent from acute infection with the Armstrong (Arm) strain of LCMV. Our results show that mice that were chronically infected with CL13 but not those that had recovered from Arm infection have highly defective ECTV-specific CD8+ and CD4+ T-cell responses to WT ECTV. These defects are at least partly due to the chronic infection environment. In contrast to mice infected with WT ECTV, mice chronically infected with CL13 survived without signs of disease when infected with ECTV-Δ036, a mutant ECTV strain that is highly attenuated. Strikingly, mice chronically infected with CL13 mounted a strong CD8+ T-cell response to ECTV-Δ036 and survived without signs of disease after a subsequent challenge with WT ECTV. Our work suggests that enhanced susceptibility to acute viral infections in chronically infected individuals can be partly due to poor T-cell responses but that sufficient T-cell function can be recovered and resistance to acute infection can be restored by immunization with highly attenuated vaccines. IMPORTANCE Chronic viral infections may result in immunosuppression and enhanced susceptibility to infections with other pathogens. For example, we have recently shown that mice chronically infected with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13) are highly susceptible to mousepox, a disease that is caused by ectromelia virus and that is the mouse homolog of human smallpox. Here we show chronic CL13 infection severely disrupts the expansion, proliferation, activation, and cytotoxicity of T cells in response due at least in part to the suppressive effects of the chronic infection milieu. Notably, despite this profound immunodeficiency, mice chronically infected with CL13 could be protected by vaccination with a highly attenuated variant of ECTV. These results demonstrate that protective vaccination of immunosuppressed individuals is possible, provided that proper immunization tools are used.


2016 ◽  
Vol 196 (6) ◽  
pp. 2666-2676 ◽  
Author(s):  
Maria A. Steffensen ◽  
Louise H. Pedersen ◽  
Marie L. Jahn ◽  
Karen N. Nielsen ◽  
Jan P. Christensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document